

NAO «L.N. GUMILYOV EURASIAN NATIONAL UNIVERSITY»

Module Handbook Educational program 7M05401- Mathematics

> Nur-Sultan 2022

Contents	Page
Module 1: EDUC 52003 Higher School Pedagogy	4
Module 2: PSYC 52004Management psychology	4
Module 3: MATH 53005 Methods of functional analysis	6
Module 4: MATH 53006 Application of Trigonometric Fourier series and Fourier transform	6
in information compression problems	
Module 5: MATH 53007 Integrability and summability of orthogonal series	7
Module 6: MATH 53008 The theory of groups	8
Module 7: MATH53009 The basic computational aggregates of the numerical analysis	9
Module 8: MATH53010 The compact operators	10
Module 9: MATH53011 Discrete space and the basic inequalities in them	11
Module 10: MATH53012 Topological vector spaces	12
Module 11: MATH53013 Metric spaces and theory of operators	15
Module 12: MATH53014 Classes of multipliers in the trigonometric system	14
Module 13. MATH 53016 Finite Abelian groups	14
Module 15: MATH 53017 Computational (numerical) diameter by exact information	15
Module 16 MATH 53018 The linear differential operators	18
Module 17 MATH52010 Incruelities in functional spaces	10
Module 17: MATH53019 Inequalities in functional spaces	19
Module 10: ENGL 52002 Elements of the theory of generalized functions	19
Module 20: PHI 52001 History and Philosophy of Science	20
Module 20. FILL 52001 History and Fillosophy of Science	22
Module 22: MATH 52027 Doublear analysis in finite-dimensional space	23
Module 22: MATH53022 Noninear analysis in finite-dimensional space.	25
Module 24: MATH53024 Singular integrals in function spaces	26
Module 25: MATH53025 Spaces and rings	27
Module 26: MATH53026 Algebraic number theory in reconstruction problems	28
Module 27: MATH53027 The singular differential equations	29
Module 28: MATH53028 Generalized Morrey spaces and their application	30
Module 29: MATH53029 The theory of measure	31
Module 30: MATH53030 Weighted inequalities of Hardy type	31
Module 31: MATH 53031 Fourier series in the regular system	32
Module 32: MATH 53032 Binary analysis	33
Module 33: MATH 53033 Lie algebras and their automorphisms	34
Module 34: MATH53034 Problems of numerical integration in the context of a computer	35
(computing) diameter	
Module 35: MATH53035 Expansion and contraction of linear operators	36
Module 36: MATH53036 Net spaces and their application	37
Module 37: MATH53037 Weighted space of functions whole smoothness	38
Module 38: MATH62038 Linear analysis in finite-dimensional space	39
Module 39: MATH63039 Boundedness of integral and matrix operators	39
Module 40: MATH63040 Summability of multiple Fourier series	40
Module 41: MATH63041 The theory of approximation of functions	41
Module 42: MATH 63042 Galois theory	42
Module 43: MATH 63043 Limiting error of unexact information of optimal recovery (case of	43
recovery the functions)	44
Module 45: MATH 63045 Fourier multipliers in Lorentz spaces	44 75
Module 46: MATH 63046 Interpolation of weighted Sobolev spaces	45 46
Module 47: MATH 63047 Additive and multiplicative weighted inequalities	47
module 17. martin 000+7 reduce and multiplicative weighted inequalities	L T/

Module 48: MATH 63048 Multipliers of trigonometric Fourier series	48
Module 49: MATH 63049 C* - Algebras	49
Module 50: MATH 63050 Group-based cryptography	50
Module 51: MATH 63051 Optimal approximation of a thermal process with infinitely smooth	51
initial conditions	
Module 52: MATH 63052 he linear equations in the Banach space	52
Module 53: MATH 63053 Summability of Fourier coefficients functions from weight spaces	53
Modulr 54: MATH 63054 The general theory of interpolation Sobolev spaces	54
Module 55: MATH63055 Weighted estimates of matrix operators	55
Module 56: MATH63056 Transformations of type Hardy and Bellman	56
Module 57: MATH63057 Wavelet analysis	57
Module 58: MATH63058 Polynomial automorphisms	58
Module 59: MATH63059 Limiting errors unexact information for the discretization of PDE	59
solutions	ļ
Module 60: MATH63060 The generalized solutions of the equations of mathematical	60
physics	ļ
Module 61: MATH63061 Multivariable interpolation method and its application	61
Module 62 MATH63062 Multipliers on weighted spaces of smooth functions	62
Module 63 SRWG 52120 Scientific-research work of graduate students	63
Module 64 TEIN 52063Teaching internship	63
Module 65 SRWG 62065 Research practice	65

Module 1		
Module code and name	EDUC 52003 Higher School Pedagogy	
Semester(s) in which the module is taught	2	
Persons responsible for the module	Kalkeeva K.R	
Language of instruction	Kazakh/Russian	
Connection with the curriculum (cycle,	Basic (university component).	
component)		
Credit points	4 ECTS	
Type of teaching, contact hours	Total workload: 120 hours. Lectures: 15 hours, practical: 22 hours, independent work of students: 83 hours.	
Workload	Traditional. Active and interactive teaching methods	
Requirements according to the	Methods of studying private methods", Technologies of teaching at the	
examination regulations	university.	
Recommended prerequisites	The development of professional and pedagogical thinking of teachers, the formation of scientific and pedagogical knowledge and skills necessary both for teaching and for improving general professional competence and pedagogical culture.	
Module objectives/intended learning	The proposed course is aimed at familiarizing undergraduates with	
outcomes	scientific and pedagogical approaches in the organization of the pedagogical process, as well as with the principles of pedagogical activity carried out in the system of vocational education. The sphere of professional pedagogical activity of a teacher is: - higher educational institutions; - colleges and other educational institutions; - organizations and enterprises whose activities are related to various aspects of teaching. The presented discipline assumes the creation of pedagogical conditions that ensure the development of the pedagogical position of masters, the formation of which determines the manifestation of the subjective characteristics of the teacher's personality in the system of professional education.	
Content	Matrix test	
Study and examination requirements and	Visiting the MOE platform. The study of materials offered on the basis	
forms of examination	of the MOE and PLATONUS, timely completion of tasks and according to the test schedule to pass tests on the main course and SRO.	
Media employed	Recording a video lecture accompanied by slides and movies. The study and feedback is carried out on the basis of the MOE and PLATONUS.	
Reading list	1. Akhmetova G.K., Isaeva Z.A. Pedagogy: Textbook for master's degree of universities. – Almaty: Kazakh University, 2018 – 328 p. 2. Pedagogical technologies: a textbook for students of pedagogical specialties / edited by V. S. Kukushin. — Rostov n/A: March, 2017. — 320 p. 3. Pedagogy of higher school: Textbook / Okolelov O.P. – M.:SIC INFRA-M, 2017. – 176 p. 4.Pedagogy of higher school: Textbook / K.R.Kalkeeva et al. – Astana-Master PO LLP, 2017. – 253 p. 5. Pedagogy of higher school: textbook / Sholpakulova G. K., Kalkeeva K.R., Nur-Sultan, 2021 - 288	

Module	2
Muule	4

Niodule 2		
Module code and name	PSYC 52004 Management psychology	
Semester(s) in which the module is	1	
taught		
Persons responsible for the module	Mambetalina	
Language of instruction	Kazakh/Russian	
Connection with the curriculum (cycle,	Basic (university component).	
component)		
Credit points	4 ECTS	

Type of teaching, contact hours	Total workload: 120 hours. Lectures: 15 hours, practical: 22 hours, independent work of students: 83 hours.
Workload	Group work. Problematic discussion. Search method. Construction. Essay. Situational modeling. Text analysis. Creative writing.
Recommended prerequisites	Psychology, Rukhani zhangyru.
Module objectives/intended learning	Objectives: to teach undergraduates the management basics that ensure
outcomes	the preservation of a certain structure organized systems; maintaining the
oucomes	regime of management activities program implementation and
	management goals in professional activities. Expected learning outcomest
	The largement goals in professional activities. Expected rearining outcomes.
	To know, the essence of the subject management psychology, basic
	ineories and concepts of management psychology in modern domestic
	and foreign science; methodological and technological features of
	management in the professional sphere. Skills: be able to: analyze the
	processes of managerial activity; identify psychological management
	schemes; develop management schemes taking into account
	psychological patterns; determine the features of psychological
	interaction in management to possess: modern methods of socio-
	psychological analysis and diagnostics of the content and forms of
	managerial activity; methods of implementation of basic management
	approaches in the field of public procurement.
Content	Introduction to Management psychology. The personality of the manager.
	Management styles, delegation, and the business career of a manager.
	Psychology of staff motivation. Socialization of personality as a social
	phenomenon. Characteristics of the process of adaptation of the
	subordinate to the conditions of the organization. The system of
	regulation of behavior and activity of the individual in the organization.
	Communication as a social phenomenon. Features of managerial
	communication. Communication of the manager with subordinates as
	information exchange, interaction and impact. Problems of interpersonal
	perception in managerial communication. Features of communication of
	the head in a modern organization. Social organization as an object of
	management. Psychology of conflict management in the activities of the
	head. Social intelligence in the activities of the head. The health of the
	manager. Prevention and overcoming of stresses and life crises.
Study and examination requirements	It is necessary to participate in all types of control: current, intermediate,
and forms of examination	final, control of independent work of students. According to the
	discipline, the final score is determined, which consists of the results of
	the rating control and the exam, with 60% of the rating control, 40% of
	the exam result. The exam must score at least 50% to successfully
	complete the course.
Media employed	Recording a video lecture accompanied by slides and movies. The study
	and feedback is carried out on the basis of the MOE and PLATONUS.
Reading list	1. Bazarov, T.Y. Psychology of personnel management: Textbook and
	workshop for academic undergraduate / T.Y. Bazarov Lyubertsy:
	Yurayt, 2016 381 p.
	2. Kozlov, V.V. Psychology of management: Textbook / V.V. Kozlov
	M.: Academy, 2016 240 p.
	3. Maltseva Yu. A., Yatsenko U. Yu. Psychology of management.
	Y ekaterinburg : Ural Publishing House. un-ta, 2016. — 92 p.
	4. Litvak, M.E. To command or obey? Psychology of management / M.E.
	LITVAK PN.D.: Phoenix, 2018 384 p.
	5. Konovalenko, v. A. Psychology of personnel management: textbook
	Tor academic bachelor's degree / V. A. Konovalenko, M. Yu.
	Konovalenko, A. A. Solomatin. — M.: Yurayt Publishing House, 2015.

6. Bazarov T.Y. Psychology of personnel management: textbook and
workshop for academic bachelor's degree.2015, Publishing House Yurayt
M 381 p.
7. Kozlov, V.V. Psychology of management / V.V. Kozlov M.:
Academia, 2017 48 p.
8. Konovalenko, V.A. Psychology of personnel management: Textbook
for academic

Module 3		
Module code and name	MATH53005 Methods of functional analysis	
Semester(s) in which the module is taught	Semester 1	
Persons responsible for the module	R. Oinarov	
	A.M. Temirkhanova	
	A.M. Abylaeva	
Language of instruction	Russian	
Connection with the curriculum (cycle, component)	Basic (Optional component)	
Credit points	8 ECTS	
Type of teaching, contact hours	Traditional. Active and interactive teaching methods	
Workload	Total workload: 240 hours. Lectures: 45 hours, practical: 30 hours, independent work of students: 165 hours.	
Requirements according to the	Formation of theoretical and practical knowledge in functional analysis,	
examination regulations	development of skills development and execution of scientific	
	experiments.	
	Perform all kinds of work (participation in lectures, active work at	
	seminars, perform SIW, to hand in all kinds of control etc.) provided by	
	the module, the positive rating for the exam.	
Recommended prerequisites	Mathematical Analysis III	
Module objectives/intended learning	To master theoretical knowledge on the theory of metric, linear,	
outcomes	normalized, Euclidean, Hilbert spaces, be able to analyse, prove, draw	
	conclusions and apply the knowledge gained in research work. To be	
	able to prove theorems and solve problems	
Content	Discipline "Methods of functional analysis" is aimed at studying the	
	basic methods of functional analysis. The subject of studing are the	
	general theory of infinite-dimensional metric spaces, linear normed	
	spaces, Euclidean, Hilbert spaces, functionals and operators on them; the	
	theory of measure and integration in general spaces with measure, the	
	establishment of generalizing connections between different branches of	
	mathematics. In the process of learning, students should master the basic	
	methods of functional analysis and acquire skills in research and	
Study and growing tion as a sign and	problem solving.	
forms of examination requirements and		
Madia amployed	Sullabus advestional guida computer projector interactive whitehoard	
Reading list	1 Kolmogorov A N. Eomin S V. Elements of the theory of function and	
Keaung list	functional analysis M · Science 2008	
	2 Trenogin V & Eurotional analysis Moscow: FIZMATI IT 2002	
	3 R A Adams Soboley snaces // Pure and annlied mathematics _Vol	
	65. Academic Press., New York-London 2005. 268pp.	
Study and examination requirements and forms of examination Media employed Reading list	 combined exam Syllabus, educational guide, computer, projector, interactive whiteboard 1. Kolmogorov A.N., Fomin S.V. Elements of the theory of function and functional analysis. M.: Science, 2008. 2. Trenogin V.A. Functional analysis, Moscow: FIZMATLIT, 2002. 3. R.A. Adams. Sobolev spaces // Pure and applied mathematicsVol. 65. Academic Press., New York-London 2005, 268pp. 	

Module 4		
Course code and name	MATH53006 Application of Trigonometric Fourier series and Fourier	
	transform in information compression problems	
Semester(s) when the course is	1	
taught		

Persons responsible for the module	N.T. Tleukhanova,		
	G.K.Mussabayeva		
	A.A. Jumabayeva		
Language of instruction	Russian		
Connection with the curriculum	Basic (Optional compon	ent)	
(cycle, component)			
Credit points (total by discipline)	8 ECTS		
Teaching methods	Case study, brainstormir	ig, works in group, comn	nunicative method,
	cinquain method, interac	tive method, differentiate	ed approach, project
Workload (incl. contact hours, salf	Total workload: 240	ice.	
study hours)	Lectures	Practical training	Self study hours
study hours)	A5	30	165
	45	50	105
Required and recommended	Mathematical Analysis I	II.	
prerequisites for joining the course	5		
Module objectives/intended learning	The discipline is aimed a	at studying the basic prop	perties of trigonometric
outcomes	series and Fourier transf	orms of functions from v	arious functional spaces
	and their applications in	information technology.	Using the filtration
	properties of the Fourier	transform, the constructi	on of operators for
	compression and restora	tion of 2D and 3D video	information is considered.
Content of the course	Discipline "Trigonometr	ic Fourier series and Fou	rier transforms" is a
	subject aimed at teaching	g important methods of h	armonic analysis. The
	object of learning is orth	ogonal series, trigonome	tric Fourier series,
	properties, Dirichlet deri	vative, Fayer summit, su	fficient conditions of
	convergence. In addition	, Fourier series complex	types and multiple
	trigonometric Fourier se	ries are studied. In the pr	ocess of learning, master
	students should master the	he trigonometric Fourier	series and acquire skills in
Examination forms	research and problem so	iving.	
Examination forms	Current control is set we	akly is astimated at 100	points includes the
Study and examination requirements	current control is set we	ekiy, is estimated at 100 a work at the blackboard	homowork and
	independent work The fi	s, work at the blackboard	consists of 40% of the
	progress in the exams 6	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Tolerance rating is the
	arithmetic mean of midt	erm controls including 5	0% of the current rating
	and 50% of intermediate	controls. To be admitted	to the exam you must
	have an admission rating	of 50 points or higher.	i to the exam, you must
Technical and electronic learning	Multi-projector, presenta	ations, maps, internet acc	ess for articles
tools	FJ, F	·····, ···· r -, ·····	
Reading list	1.Trenogin VA Function	nal Analysis, 3rd edition,	M .: FIZMATLIT, 2002.
_	2. H. Triebel Function S	paces. Basel; Boston: Bir	khäuser Verlag, 2010 (in
	Russian).		
	3.G.K. Mussabayeva, N	. T. Tleukhanova/Bochka	arev inequality for the
	Fourier transform of fun	ctions in the Lorentz space	ces L2,r(R)/
	EurasianMath. J., 2015,	<u>V6, N1,</u> p. 76–84.	
	http://www.mathnet.ru/p	hp/person.phtml?option_	lang=rus&personid=9176

Course code and name	MATH 52105 Integrability and summability of orthogonal series
Semester(s) when the course is taught	1
Persons responsible for the module	Bokayev N.A.
Language of instruction	Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	8 ECTS

Teaching methods	Classical teaching method: lecturing and solving problems in the
	classroom.
Workload (incl. contact hours, self-	Total workload: 240 hours.
study hours)	Lectures: 45 hours, practical: 30 hours, independent work of students: 165
	hours.
Required and recommended	Functional Analysis, Harmonic Analysis
prerequisites for joining the course	
Module objectives/intended learning	Mastering by students the necessary mathematical apparatus of
outcomes	orthogonal series, which helps to analyze, model and solve applied
	problems using modern technologies. / Mastering the apparatus of
	orthogonal series by students, the ability to analyze and apply the
	knowledge gained to solve problems of mathematical modeling.
Content of the course	The course covers the following areas of mathematics: Orthogonal
	systems: trigonometric system, Walsh system, multiplicative systems,
	trigonometric series, Walsh series, series over multiplicative systems,
	generalized monotone sequences, integrability of orthogonal series.
	summability of orthogonal series by the Feiér method and the Abel-
	Poisson method
Examination forms	verbal
Study and examination requirements	Mandatory attendance by students of all classes according to the schedule:
Study and examination requirements	Preliminary preparation for classes: Timely completion and submission of
	SPOs: Drangeration for all types of classes should be independent creative:
	Active work and manifestation of creativity during classes: Participation
	in all tupes of control. Commitment to the University's Academia
	In an types of control, Communent to the University's Academic
The device of the state of the second state of	Integrity Policy.
Technical and electronic learning tools	Interactive whiteboard, interactive whiteboard projector, computer.
Reading list	1. Bari N.K. trigonometric series. M.: Fizmatgiz, 1961 – 960p.
	2. Zygmund A. Trigonometric series. M.: Mir, 1965 -520p.
	3. Kashin B.S., Sahakyan A.A. Orthogonal series . M.: Nauka, 2015 -
	315p.
	4. Edwards R. Fourier series in modern presentation. M.: Mir, 1985. T. 1-
	2, 530p.

	Module 6
Course code and name	MATH 53008 The theory of groups
Semester(s) when the course is taught	1
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
_	2. Abutalipova Sh.U., senior Persons responsible for the module,
	Candidate of Physical and Mathematical Sciences
Language of instruction	Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	8 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic
Workload (incl. contact hours, self-study	Total workload: 240 hours.
hours)	Lectures: 45 hours, practical: 30 hours, independent work of students:
	165 hours.
Required and recommended	No
prerequisites for joining the course	
Module objectives/intended learning	To acquaint with the basic concepts and classical facts and results of
outcomes	group theory, the development of methods for solving problems on this
	theory.
	As a result of the course, students will know the basic definitions and
	statements of group theory, be able to prove the main results and solve
	problems in the discipline.

Content of the course	Groups. Subgroups. Cyclic groups. Homomorphism and isomorphism of groups. Kernel and image of a homomorphism. normal subgroups. Factor-group. Theorems on group homomorphisms. The action of a group on a set. p-groups. Sylow's theorems. Solvable and simple groups. External, internal direct product of groups. Decomposable groups. Free groups. Specifying a group by generators and defining relations.
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for lectures and practical exercises based on the materials of previous classes, teaching aids and relevant Reading list; timely fulfill and hand over the tasks of the IWS; participate in all types of control (current control, IWS control, boundary control, final control).
Technical and electronic learning tools	projector, laptop, screen, discipline syllabus, EMCD, textbooks and materials on topics.
Reading list	 Gorodentsev A.P. Algebra, textbook for mathematics students, Part 1, 2013 485 p. Kurosh A.G Theory of groups - Publishing house "Fizmatlit" - 2011 - 808s ISBN: 978-5-9221-1349-6 Lyapin E.S., Aizenshtat A.Ya., Lesokhin M.M Exercises on group theory - Publishing house "Lan" - 2010 - 272s ISBN: 978-5-8114- 1015-6.

	Module 7
Module code and name	MATH53009 The basic computational aggregates of numerical analysis
Semester(s) in which the discipline is taught	1
Persons responsible for the module(s)	N. Temirgaliyev, N. Nauryzbaev, G. Taugynbaeva, A. Zh. Zhubanysheva
Language of instruction	Russian
Connection with the curriculum (cycle, component)	Basic (Optional component)
Credit scores (by discipline)	8 ECTS
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with scientific Reading list, offline and online consultations
Workload (incl. contact hours, self- employment hours) contact hours	Total workload: 240 hours. Lectures: 45 hours, practical: 30 hours, independent work of students: 165 hours.
Required and recommended prerequisites for attaching to the module	Mathematical analysis, Theory of functions of a real variable (Real analysis), Functional analysis, Mathematical physics
The purpose of the discipline / expected learning outcomes	Acquaintance with the main computational aggregates of approximation theory and their applications in solving specific problems of approximation theory in the context of International Mathematics
The content of the discipline	Widths as formulations of various optimization problems of approximation theory, the most important examples of functionals and operators, the structure of sets of computational aggregates, the informative possibilities of the set of all polynomials with respect to a given system of linearly independent functions, computational aggregates constructed by the trigonometric Fourier coefficients of the function, from the values of the function at points, from the Radon transform, for all kinds of linear functionals and non-linear functionals (not for all)
Exam Forms	Oral exam
Tuition and Exam Requirements	Attendance at all classroom sessions, fulfillment of independent work of a student, assignments of all types of controls (current, intermediate and final)

	Module 8		
Course code and name	MATH53010 The comp	pact operators	
Semester(s) when the course is taught	1		
Persons responsible for the module	1. K.N. Ospanov		
Language of instruction	Russian		
Connection with the curriculum (cycle,	Basic (Optional compo	nent)	
component)			
Credit points (total by discipline)	8 ECTS		
Teaching methods	explanatory-illustrative	, information-reporting,	partial-search,
	reproductive		
Workload (incl. contact hours, self-study	Total workload: 240		
hours)	Lectures	Practical training	Self-study hours
	45	30	165
Required and recommended	Functional analysis		
prerequisites for joining the course			

|--|

Module objectives/intended learning outcomes	- know the methods of the theory of closed linear operators in Hilbert space, functional equations of the second kind, and elements of the theory of generalized functions
	of generalized functions.
	- to own the skills to represent boundary value problems with nonsmooth
	data in the form of an operator equation and study by functional methods.
	- be able to represent boundary value problems with nonsmooth data in
	the form of an operator equation and explore them by functional methods.
Content of the course	Hilbert space. Spectral theorems. Conjugate operator, completely
	continuous operator, and their various properties. An alternative to
	Fredholm. Spectrum of the operator. Symmetric operators
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Trenogin V.A. Functional analysis: in 2 volumes: textbook Moscow:
	Academy, 2013 230 p ISBN 978-5-7695-9137-2 ISBN 978-5-7695-
	9138-9. (in Russian)
	2. Vlasova E.A. Elements of functional analysis: textbook / St.
	Petersburg; Moscow ; Krasnodar: Lan, 2015 397 p. ISBN 978-5-8114-
	1958-6 (in Russian)
	3. Filimonenkova N.V. Collection of problems in functional analysis: a
	study guide St. Petersburg. Lan, 2015 228 p ISBN 978-5-8114-
	1822-0 (in Russian)
	4. A.N. Kolmogorov, S.V. Fomin. Elements of the theory of functions and
	functional analysis: textbook / 7th ed Moscow: Fizmatlit, 2006 572 p.
	- ISBN 5-9221-0266-4 (in Russian)
	5. Bakushinsky A.B. Elements of functional analysis: a study guide 2nd
	ed., corrected Moscow: Academy, 2013 187 p ISBN 978-5-7695-
	9744-2 (in Russian)

	Мо	dule 9	
Course code and name	MATH 53011 Dis	crete space and the basic in	equalities in them
Semester(s) when the course is taught	1		
Persons responsible for the module	Y.D. Nursultanov,		
	A.A. Jumabayeva		
Language of instruction	Russian		
Connection with the curriculum (cycle,	Basic (Optional cor	nponent)	
component)			
Credit points (total by discipline)	8 ECTS		
Teaching methods	Case study, brainsto	orming, works in group, cor	nmunicative method,
	cinquain method, in	teractive method, differenti	ated approach, project
	method, lecture-cor	ference, "hot chair" method	d.
Workload (incl. contact hours, self-study	Total workload: 24)	
hours)	Lectures	Practical training	Self-study hours
	45	30	165
Required and recommended	Functional analysis		
prerequisites for joining the course			

Module objectives/intended learning	- know the methods of the theory of interpolation spaces for their
outcomes	application to Lebesgue, Lorentz's concrete discrete spaces.
	- to own the skills of work with various inequalities.
	- be able to apply them at research of specific objectives.
Content of the course	Discrete Lebesgue, Lorentz spaces, Inequalities of holder, Minkowski,
	young-O'neill, their generalizations. Theorems Of Hardy-Littlewood,
	Stein, Boas. Interpolation of basic discrete spaces.
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Hans Triebel. Theory of Function Spaces, Springer Science &
	Business Media, 2010.
	3. R.E. Edwards. Fourier Series: A Modern Introduction Volume1,2,
	Springer New York, 2011.
	4. Zorich V.A. Mathematical analysis Moscow: Center for Continuing
	Mathematical Education, 2012 (in Russian).
	5. Trenogin V.A. Functional Analysis, 3rd edition, M .: FIZMATLIT,
	2002 (in Russian).
	6.Nikolsky S.M. Selected works. The 3 volumes. V.2 M .: Science,
	2007 (in Russian).
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=858
	5

Course code and name	MATH 53012 Topolog	gical vector spaces		
Semester(s) when the course is taught	1			
Persons responsible for the module	Kusainova L.K			
Language of instruction	Russian			
Connection with the curriculum (cycle, component)	Basic (Optional compor	Basic (Optional component)		
Credit points (total by discipline)	8 ECTS			
Teaching methods	Lectures, practical class	es		
Workload (incl. contact hours, self-study	Total workload: 240			
hours)	Lectures	Practical training	Self-study hours	
	45	30	165	
Required and recommended	Topological vector spa	ices		
prerequisites for joining the course				
Module objectives/intended learning	To give the basics of the	e theory of topological ve	ector spaces. Definitions	
outcomes	and properties of basic t	opological concepts and	objects/Fluency within	
	the stated theory. The al	oility to apply functional	analysis methods in	
	research			
Content of the course	Topological spaces. The	e fundamental system of	neighborhoods.	
	Continuous displays. Co	ompact sets. Topological	vector spaces (TVP). The	
	neighborhood system in	TVP. The concept of se	parability in TVP.	
	Locally convex topolog	ical vector spaces. The sp	pace of continuous linear	
	functionals on locally co	onvex TVPs. Examples.		
Examination forms	Oral examination (theor	etical and practical tasks)	

Study and examination requirements	Timely completion of tasks on the subject under study, independent work
Technical and electronic learning tools	Textbooks, manuals, monographs on electronic media
Reading list	1. Burbaki N. Topological vector spaces. M.: Publishing house of foreign
	Languages. lit-ry, 1959
	2. Ioshida K. Functional analysis. M.: Publishing house "Mir", 1967. —
	616 p.
	3. Kolmogorov, A.N.; Fomin, S.V. Elements of the theory of functions
	and functional analysis. Publisher: M.: Fizmatlit; 7th edition, 2004.

	Moule 11		
Module code and name	MATH 53013 Metric spaces and theory of operators		
Semester(s) in which the module is	Semester 1		
taught			
Persons responsible for the module	R. Oinarov		
	L.K. Kusainova		
	A.M. Abylaeva		
Language	Kazakh,Kazakh/Russian		
Connection with the curriculum (cycle,	Basic (Optional component)		
component)			
Type of teaching, contact hours	Lectures, Seminars, SIW		
Workload	Lectures Seminars SIW		
	45 30 135		
Credit points	7		
Requirements according to the	Formation of theoretical and practical knowledge in theory of metric spaces		
examination regulations	and theory of operators, development of skills development and execution		
	of scientific experiments.		
	Perform all kinds of work (participation in lectures, active work at seminars,		
	perform SIW, to hand in all kinds of control etc.) provided by the module,		
	the positive rating for the exam.		
Recommended prerequisites	Mathematical Analysis II		
Module objectives/intended learning	To master theoretical knowledge on the theory of metric spaces, be able to		
outcomes	analyse, prove, do conclusions and apply the knowledge gained in research		
	work. To be able to prove theorems and solve problems. To acquire		
	knowledge about linear operators, their properties, to be able to find the		
	norms of operators in various function spaces.		
Content	Definitions and basic properties of various function spaces, metric, norm,		
	scalar product, types of convergences in various function spaces, open,		
	closed sets, closure of sets, contraction mapping principle, compactness in		
	metric spaces, linear bounded operators, functionals, inverse operators,		
	closed, adjoint, compact operators.		
Study and examination requirements	combined exam		
and forms of examination			
Media employed	Syllabus, educational guide, computer, projector, interactive whiteboard		
Reading list	1. Kolmogorov A. N., Fomin S. V. Elements of the theory of functions and		
	functional analysis. 7th ed. FIZMATLIT, 2004. ISBN 5-9221-0266-4. 572		
	pp. (in Russian)		
	2. Trenogin V.A. Functional analysis. Textbook. 3rd ed. FIZMATLIT,		
	2002. 488 pp. ISBN 5-9221-0272-9 (in Russian)		
	3. V. A. Sadovnichy, Operator Theory. 5th ed. Bustard, 2004. 384 pp. ISBN		
	5-7107-8699-3. (in Russian)		
	4. V. M. Fedorov, Course of Functional Analysis. Lan, 2005. 352 pp. ISBN		
	5-8114-0589-8. (in Russian)		
	4. V. M. Fedorov, Course of Functional Analysis. Lan, 2005. 352 pp. ISBN		
	5-8114-0589-8. (in Russian)		

5. Bogachev V. I., Smolyanov O. G. Real and functional analysis:
University course. RHD, 2009. 724 pp. ISBN 978-5-93972-742-6. (in
Russian)
6. L. V. Kantorovich and G. P. Akilov, Functional Analysis. 3rd ed. The
science. GRFML, 1984. 750 pages. (in Russian)

	Module 12
Course code and name	MATH 53014 Classes of multipliers in the trigonometric system
Semester(s) when the course is taught	1
Persons responsible for the module	N.T. Tleukhanova,
<u>^</u>	A.A. Jumabayeva
	G.K. Mussabayeva
Language	Kazakh,Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	7 ECTS
Teaching methods	Case study, brainstorming, works in group, communicative method,
	cinquain method, interactive method, differentiated approach, project
	method, lecture-conference, "hot chair" method.
Workload (incl. contact hours, self-	Total workload: 210
study hours)	Lectures Practical training Self-study hours
	45 30 135
Required and recommended	Mathematical Analysis II.
prerequisites for joining the course	
Module objectives/intended learning	To master mathematical apparatus of the theory of ranks, concept of classes
outcomes	of multipliers, to be capable to build classes of multipliers on trigonometric
	system
Content of the course	Trigonometric series, Fourier coefficients, the classes of multipliers,
	trigonometric system, the classes of multipliers for trigonometric system.
	multipliers with the space of L creater and Pasey
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
5 1	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is the
	arithmetic mean of midterm controls, including 50% of the current rating
	and 50% of intermediate controls. To be admitted to the exam, you must
	have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. H. Triebel Function Spaces. Basel; Boston: Birkhäuser Verlag, 2010 (in
	Russian).
	2. The multipliers of multiple trigonometric Fourier series/ A.Ydyrys,
	L.Sarybekova, N.Tleukhanova/Open Eng.2016P367-371
	3.A. Jumabayeva, E. Smailov, N. Tleukhanova On spectral properties of
	the modified convolution operator // Journal of Inequalities and
	Applications 2012, 2012:146
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=9176

Module	13
mouuic	10

Course code and name	MATH 53015 Spaces of potentials and their applications
Semester(s) when the course is taught	1
Persons responsible for the module	Bokayev N.A.
Language	Kazakh/Russian

Connection with the curriculum	Basic (Optional compone	ent)	
(cycle, component) Credit points (total by discipline)			
Teaching methods	/ EC15 Classical tapphing method: lacturing and solving problems in the classroom		
Workload (incl. contect hours, calf	Total workload: 210		
study hours)	L octures	Practical training	Salf study hours
	45	30	135
Required and recommended	Functional Analysis, Har	monic Analysis	
prerequisites for joining the course			
Module objectives/intended learning outcomes	Mastering by students the which helps to analyze, n technologies. / Mastering potentials and the ability of mathematical modelin	e necessary mathematica nodel and solve applied p by students the apparatu to apply the acquired kno g.	l apparatus of potentials, problems using modern is of the theory of pwledge to solve problems
Content of the course	The course covers the fol	lowing sections:	
	Operators in function spaces, Riesz and Bessel potentials and		
	interconnection.		
	The Hardy-Littlewood-Se	obolev theorem on fraction	onal integration. Potential
	spaces and their properties. Nikolsky-Besov spaces. Connection of the		
	space of potentials with o	other functional spaces. L	iouville function classes.
	Morrey type spaces. Bou	ndedness of the Riesz po	tential in spaces of
	Morrey type. Communica	ation with Hardy operato	rs. Connection with
	fractional-maximal opera	tors. Applications of the	potential space.
Examination forms	Verbal	. 1 . C 11 1	11 . 1 . 1
Study and examination requirements	Mandatory attendance by Preliminary preparation f SROs; Preparation for all Active work and manifes all types of control; Com Policy.	or classes; Timely comp types of classes should tation of creativity durin mitment to the Universit	letion and submission of be independent, creative; g classes; Participation in y's Academic Integrity
Technical and electronic learning tools	Interactive whiteboard, in	nteractive whiteboard pro	jector, computer.
Reading list	1. Stein I.M. Singular pro functions. M.: MIR. 1973	operties of functions and 3 342p.	differential properties of
	2.Stein I., Weiss G. Intro M.: Mir 1984 280p.	duction to harmonic anal	ysis in Euclidean spaces.
	3. Kashin B., Sahakyan A 4. Triebel H. Functional s	A. Orthogonal series M. M paces, M.: Mir 1986, - 4	Vauka, 2015 – 320p. 47p.
	5. Nikolsky S.M. Approx embedding theorems M ·	imation of functions of s	several variables and

	Module 14
Course code and name	MATH 53016 Finite Abelian groups
Semester(s) when the course is taught	1
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
	2. Abutalipova Sh.U., senior Persons responsible for the module, Candidate
	of Physical and Mathematical Sciences
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	7 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic

Workload (incl. contact hours, self-	Total workload: 210 hours.
study hours)	Lectures: 45 hours, practical: 30 hours, independent work of students: 135
•	hours.
Required and recommended	No
prerequisites for joining the course	
Module objectives/intended learning	To acquaint with the basic concepts and results of the theory of Abelian
outcomes	groups and the development of methods for solving problems on this
	theory.
	As a result of the course, students will know the basic definitions and
	statements of the theory of Abelian groups, be able to prove the main results
	and solve problems in the discipline.
Content of the course	Finite abelian groups. Periodic abelian groups. Primary groups. Elementary
	divisors of the primary group. The number of non-isomorphic primary
	groups of order pn. Free abelian groups. Finitely generated abelian groups.
	Divisible Abelian groups. Torsion coefficients of a finite Abelian group.
	Abelian groups without torsion. Factorial divisible groups.
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for lectures and practical exercises
	based on the materials of previous classes, teaching aids and relevant
	Reading list; timely fulfill and hand over the tasks of the IWS; participate in
	all types of control (current control, IWS control, boundary control, final
	control).
Technical and electronic learning tools	projector, laptop, screen, discipline syllabus, EMCD, textbooks and
	materials on topics.
Reading list	1. Gorodentsev A.P. Algebra, textbook for mathematics students, Part 1,
	2013 485 p.
	2. Kurosh A.G Theory of groups - Publishing house "Fizmatlit" - 2011 -
	808s ISBN: 978-5-9221-1349-6
	3. Lyapin E.S., Aizenshtat A.Ya., Lesokhin M.M Exercises on group
	theory - Publishing house "Lan" - 2010 - 272s - ISBN 978-5-8114-1015-6

	Module 15
Module code and name	MATH 53017 Computational (Numerical) diameter by exact information
Semester(s) in which the discipline is	1
taught	
Persons responsible for the module(s)	N. Temirgaliyev, N. Nauryzbaev, G. Taugynbaeva, A. Zh. Zhubanysheva
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit scores (by discipline)	7 ECTS
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with
	scientific Reading list, offline and online consultations
Workload (incl. contact hours, self-	Total workload: 210
employment hours) contact hours	Lectures Practical training Self-study hours
	45 30 135
Required and recommended	Mathematical analysis, Theory of functions of a real variable (Real
prerequisites for attaching to the	analysis), Functional analysis, Mathematical physics
module	
The purpose of the discipline /	Acquaintance with the formulation of the problem of the Computational
expected learning outcomes	(Numerical) diameter by exact information and its concretization in the
	context of International Mathematics

The content of the discipline	The idea of the Computational (Numerical) diameter, the definition of the Computational (Numerical) diameter by exact information (C(N)D-1), function classes, C(N)D-1 in the context of the informative power of a given set of functionals, an illustrative example of the physical of the content of C(N)D-1, well-known widths as a specification of the Computational (Numerical) diameter when recovered by exact information, an example of a diameter that does not fit into the scheme of the Computational (Numerical)
	diameter, illustrative results on the topic of the Computational (Numerical) diameter (by exact information)
Exam Forms	Oral exam
Tuition and Exam Requirements	Attendance at all classroom sessions, fulfillment of independent work of a student, assignments of all types of controls (current, intermediate and final)
Technical and electronic learning aids	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic textbooks
Reading list	 Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik. Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah vosstanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i priblizhenij. Rjady Fur'e[Computational (Numerical) diameter. Algebraic number theory and harmonic analysis in recovery problems (Quasi-Monte Carlo method). The theory of embeddings and approximations. Fourier series. J. Vest. ENU im. L. N. Gumilyova [Bulletin of L. N. Gumilyov Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilyova [Bulletin of L. N. Gumilyovv Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilyova [Bulletin of L. N. Gumilyovv Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilyova [Bulletin of L. N. Gumilyovv Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilyova [Bulletin of L. N. Gumilyovy Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilyov and discrete mathematics in organic unity in the context of research directions], Jelektronnoe izdanie. ITMiNV. (postojanno dopolnjaemyj po novym rezul'tatam i sootvetstvenno po novym i utochnjaemym postanovkam zadach – iz-za laviny rezul'tatov poslednih let vse vremja otadvigaemyj) [Electronic edition. IThMandSC. (constantly supplemented by new results and accordingly on new and more refined statements of problems - because of the avalanche of the results of recent years)], Astana, 2018. Temirgaliyev N. Matematika: Izbrannoe. Nauka // pod red. B. S. Kashina [Mathematics: Selected. Science/under the editorship of B. S. Kashina]. Astana: L.N.Gumilyov ENU publishing house, 2009, 613 p. Temirgaliyev N., Zhubanysheva A.Zh. Approximation Theory, Computational Mathematics and Numerical Analysis in new conception of Computational M

	Module 16
Course code and name	MATH 52116 The linear differential operators
Semester(s) when the course is taught	1
Persons responsible for the module	1. K.N. Ospanov
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	7 ECTS
Teaching methods	explanatory-illustrative, information-reporting, partial-search, reproductive
Workload (incl. contact hours, self-study	Total workload: 210
hours)	LecturesPractical trainingSelf-study hours4530135
Required and recommended	Functional analysis
prerequisites for joining the course	
Module objectives/intended learning outcomes	- know the properties of operators in Hilbert spaces, properties of compact sets and operators, properties of the spectrum of a linear operator
	 to own the methods for solving functional analysis problems, the technique of proving theorems of functional analysis.
	- to be able to find the norms of elements and operators, calculate scalar products find conjugate operators determine the spectrum of an
	operator use Fredholm theorems, represent boundary value problems
	with nonsmooth data in the form of an operator equation and explore
	them by functional methods
Content of the course	Theories of closed linear operators in Hilbert space. Operator spectrum.
	Symmetric operators. Unlimited operators. Spectrum and resolvent of
	unbounded operators. Differential operators. Operator tracks
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam,
	you must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Serovaisky S.Ya. Introduction to the spectral theory of operators /
	Almaty: Alem, 2003 365 pp ISBN 9965-553-071-3 (in Russian)
	2. A.N. Kolmogorov, S.V. Fomin. Elements of the theory of functions
	and functional analysis: textbook / 7th ed Moscow: Fizmatlit, 2006 572 p ISBN 5-9221-0266-4 (in Russian)
	3. A. Ibatov, Z. Abdikhalykova Functional analysis: okulyk / Astana: L.N. Gumilyov atyndagy E¥U, 2010 376 p ISBN 9965-31-379-2 (in Kazakh)
	4. Trenogin V.A. Functional analysis: in 2 volumes: textbook
	Moscow: Academy, 2013 230 p ISBN 978-5-7695-9137-2 (in
	Russian)
	5. Filimonenkova N.V. Collection of tasks on functional analysis:
	educational Krasnodar: Lan, 2015 228 p ISBN 978-5-8114-1822-0
	(In Kussian)

	Module 17
Course code and name	MATH 53019 Inequalities in functional spaces
Semester(s) when the course is taught	1
Persons responsible for the module	Y.D. Nursultanov,
-	A.A. Jumabayeva
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	
Credit points (total by discipline)	7 ECTS
Teaching methods	Case study, brainstorming, works in group, communicative method,
	cinquain method, interactive method, differentiated approach, project
	method, lecture-conference.
Workload (incl. contact hours, self-study	Total workload: 210
hours)	Lectures Practical training Self-study hours
	45 30 145
Required and recommended	Mathematical Analysis III
prerequisites for joining the course	
Module objectives/intended learning	An algorithm for building various filtering operators for signal
outcomes	processing will be proposed. Based on these operators, a method for
	identifying a given frequency range of the original signal will be
	described.
Content of the course	Undergraduates are taught the Lebesgue, Lorenza spatial definition and
	basic properties, introductory theorems. In addition, Hölder, Minkowski,
	Young-O'Neil, inequalities are studied. Given basic inequalities in
	different functional spaces. During this course the undergraduates
	acquire the skills of understanding and applying different inequalities.
Examination forms	oral exam.
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam,
	you must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Dorothee Haroske, Thomas Runst, Hans-Jürgen Schmeisser.
	Function Spaces, Differential Operators and Nonlinear Analysis: The
	Hans Triebel Anniversary Volume, Birkhäuser Basel, 2012.
	3. R.E. Edwards. Fourier Series: A Modern Introduction Volume 1,
	Springer New York, 2011.
	4. R. E. Edwards. Fourier Series: A Modern Introduction Volume 2,
	Springer New York, 2011.
	5. Zorich V.A. Mathematical analysis Moscow: Center for Continuing
	Mathematical Education, 2012 (in Russian).
	6. Trenogin V.A. Functional Analysis, 3rd edition, M.: FIZMATLIT,
	2002 (in Russian).

Module 1

Course code and name	MATH 53020 Elements of the theory of generalized functions
Semester(s) when the course is taught	1
Persons responsible for the module	L.K. Kusainova, Koshkarova B.S
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Basic (Optional component)
component)	

Credit points (total by discipline)	7 ECTS		
Teaching methods	Lectures, practical classes		
Workload (incl. contact hours, self-study	Total workload: 210		
hours)	Lectures	Practical training	Self-study hours
	45	30	145
Required and recommended	Elements of the theory	of generalized functions	
prerequisites for joining the course			
Module objectives/intended learning	- To give the basic	of the theory of gener	alized functions and its
outcomes	application in the analysis and solution of problems of mathematical		
	physics and mechanics	/ Fluency in the basic p	rovisions of the theory of
	generalized functions.		
	- The ability to apply in	n applied tasks.	
Content of the course	The space of smooth f	inite functions as the ma	in space and generalized
	functions. Operations	on generalized function	ons (shift, compression,
	variable replacement, c	lifferentiation, direct pro-	luct, convolution).
	The Schwarz space of	(rapidly decreasing func	tions) of basic functions.
	The space of generalized	zed functions of modera	te growth Operations on
	generalized functions	s (shift, compression,	variable substitution,
	differentiation, direct	product, convolution).	Convolution and Fourier
	transform operations.	Generalized solutions o	f the basic equations of
	mathematical physics.		
Examination forms	Oral examination (theo	retical and practical task	S)
Study and examination requirements	Timely completion of t	asks on the subject under	study, independent
	work		
Technical and electronic learning tools	Textbooks, manuals, m	onographs on electronic	media
Reading list	1. V.S. Vladimirov. Eq	uations of mathematical	physics. Nauka
	Publishing House, 200	0-е.	
	2. M.Reed, B.Simon. F	functional analysis. 1. Ed	.Mir, 1973 e.
	3. M.Reed, B.Simon. H	Iarmonic analysis. Ed.Mi	r, 1973El.
	4. S.G. Mikhlin. Linear	r partial differential equat	ions. MEl.
	5. S.L. Sobolev. Some	applications of functiona	l analysis in
	mathematical physics.	Publishing house of LSU	.200- E.
	6. L.K.Kusainova, A.S	. Kasym. Elements of the	theory of generalized
	functions. Study guide.	Almaty.2018.	

Модуль 19		
Course code and name	ENGL 52002 Foreign language (professional)	
Semester(s) when the course is taught	1/2	
Persons responsible for the module	Sagimbaeva.	
Language	Kazakh/Russian	
Connection with the curriculum (cycle,	Basic (Optional component)	
component)		
Credit points (total by discipline)	Group work. Problematic discussion. Search method. Construction.	
	Essay. Situational modeling. Text analysis. Creative writing.	
Teaching methods	Total workload: 120 hours. Practical: 37 hours, independent work of	
	students: 83 hours	
Workload (incl. contact hours, self-study	5 ECTS	
hours)		
Required and recommended	Foreign language B2	
prerequisites for joining the course		

Module objectives/intended learning	The purpose of the discipline: The acquisition and improvement of
outcomes	competencies in accordance with international standards of foreign
	language education, allowing the use of a foreign language (the level of
	super-basic standard (C1) as a means of communication for successful
	professional and scientific activities of the future master, able to compete
	in the labor market. Expected learning outcomes: - to know the
	functional and stylistic characteristics of the scientific presentation of the
	material in the studied foreign language; - be able to use general
	scientific terminology and terminological sublanguage of the relevant
	list on the chosen specialty with subsequent analysis and evaluation of
	the extracted information: - to make a presentation of scientific research
	(at seminars, conferences, symposiums, forums): - to perceive by ear and
	understand public speeches with direct and indirect communication
	(lectures, reports, TV and internet
Content of the course	Introduction to the course. Developing a focus. How to write master's
	dissertation (introductory course). Sourcing information for your project.
	Developing your project. Using evidence to support your ideas.
	Avoiding plagiarism. Paraphrasing and summarizing. Academic Style –
	some guidelines (Part I). Academic styles (Part II). Writing
	introductions. Incorporating data and illustrations. Writing conclusions.
	Presentation skills. Preparing for conference presentation. Preparing for
Examination forms	Oral examination
Study and examination requirements	Undergraduates are required to attend practical classes in a foreign
Study and examination requirements	language and take an active part in performing tasks on CPM, the results
	of which are accepted by the teacher online or in the classroom of the
	university, depending on the type and form of the task.
Technical and electronic learning tools	Databases: https://library.enu.kz/MegaPro/Web
	https://englishforacademicstudy.com
	https://garneteducation.com
	http://presentationexpressions.com
	https://alabal.oup.com/2cc=kz
	https://www.macmillanvounglearners.com/macmillanenglish/
	https://www.britishcouncil.kz/kk
	https://edpuzzle.com/
Reading list	1. Sagimbayeva J.E., Moldakhmetova G.Z., Kurmanayeva D.K.
	Tazhitova G.Z., Kassymbekova N.S. English course book for Master
	programme students of "Governmental audit and Financial control"
	specialty
	(from extended reading to academic writing) - Astana: L.N. Gumiloyv
	Eurasian National University, 2018. – 35/p.
	2. Saginuayeva J.E., Kurmanayeva D.K., Tazintova G.Z., Kassymbekova N S
	Электронное пособие - English course book "Environment and
	Natural Resources Protection" for Master students of "Management and
	Engineering in the field of Environmental Protection educational
	programs" – Nur-Sultan, 2022
	3. English for Academic Study. Joan McCormack and John Slaght -
	Extended Writing and Research Skills, University of Reading, 2012 -
	152 p.

4. Tamzen Armer - Cambridge English for Scientists - Cambridge
University Press, 2013 – 128 p.
4. Martin Hewings – Cambridge Academic English – Upper
Intermediate- Cambridge University Press, 2012 – 176 p.
5. Dorothy E. Zemach, Lisa A. Rumisek - Academic Writing: from
paragraph to essay. – London: Macmillan Education, 2016 - 130 p.
6. Academic Writing. A Handbook for International students. Stephen
Bailey. Routledge. 2011

Модуль 20
PHIL 52001 History and Philosophy of Science
1/2
Russian
Basic (Optional component).
Traditional. Active and interactive teaching methods
Total workload: 120 hours. Practical: 37 hours, independent work of
students: 83 hours
4 ECTS
World History, Political Science, Sociology.
The main purpose of the course is to develop undergraduates' interest in fundamental knowledge, to stimulate the need for philosophical assessments of the formation and development of sciences, critical analysis of modern scientific achievements, to develop a methodological culture of research work Expected learning outcomes: Analyze the main ideological and methodological problems, including interdisciplinary ones, studied in science at the present stage of its development and use the results professionally; understanding the dynamics of science development, its impact on the development of society, the formation of a holistic image of science, mastering the theory of method, mastering
the logic and methodology of science; mastering in-depth skills analysis of texts on philosophical problems of various sciences; critical understanding of various concepts of the growth of scientific knowledge; mastering the methodological culture of research work and the ability to use the acquired skills in their own professional activities.
science. Philosophical ideas as a heuristic of science and the history of science. Philosophical ideas as a heuristic of science. The genesis of science. Discussions about the emergence of science. The problem of scientific rationality. Classical science. The scientific picture of the world. The ethos of classical science. Non-classical science and post- non-classical science. The scientific picture of the world. The ethos of science. Philosophy of Science: basic meanings. Problems of the boundaries of scientific knowledge in the philosophy of I. Kant. Positivist tradition Analytical philosophy and its influence on the philosophy of science. The transition from the logic of science to the

	The main types of sciences. Types of cognitive procedures. Philosophy of natural Sciences. The range of problems of the philosophy of natural science. Philosophy of Engineering and Technical Sciences. The role of technology in science. Information and computer technologies in non- classical technical sciences. Environmental aspects of the social assessment of technology. The specifics of socio-humanitarian knowledge. The problem of the formation of social theory. The theme of "death
Examination forms	Oral examination
Study and examination requirements	To successfully pass the final control, a master's student needs to know the terminology, theories and concepts of the discipline. Know the personalities and their works. The Code of Conduct and Ethics must comply with the requirements of the university. In this regard, scores from 0 to 100 points are given.
Technical and electronic learning tools	Computer, projector. https://mooc.enu.kz/, https://moodle.enu.kz/
Reading list	1.1. Kanke V.A. Basic philosophical directions and concepts of science. Moscow, 2013 2. Kohanovsky V.A. History and philosophy of science M., - 2010 3. Klyagin N. Modern scientific map of the world [Electronic resource]: textbook / N. Klyagin 1, 02 MB Moscow: Logos, 2017 186 s 4. Kuhn T. The structure of scientific revolutionsM. AST 2015 ISBN 978-5-17-089239-6 http://www.psylib.ukrweb.net/books/kunts01/index.htm 5. Philosophy of science: General problems of cognition. Methodology of natural sciences and humanities: a textbook - M.: Progress-Tradition : MPSI : Flint, 2005. - 992 p. 6. Nurmanbetova, D.N. History and philosophy of science [Text] / D.N. Nurmanbetova Astana: ENU, 2012

Course code and name	MATH 52021 Boundary value problems for ordinary differential		
	equations		
Semester(s) when the course is taught	2		
Persons responsible for the module	1. K.N. Ospanov		
	2. B.S. Koshkarova		
	3. R.D. Akhmetkaliyeva	l	
Language	Russian		
Connection with the curriculum (cycle,	Profile (University component)		
component)		-	
Credit points (total by discipline)	5 ECTS		
Teaching methods	explanatory-illustrative,	information-reporting,	partial-search,
	reproductive		
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures	Practical training	Self-study hours
	30	15	105
Required and recommended	Differential equations		
prerequisites for joining the course			

Module objectives/intended learning	- Understand the essence of setting boundary value problems for model
outcomes	classes of differential equations master the technique of reducing
	boundary value problems for differential equations to an equivalent
	integral equation in classes of discontinuous functions. To know is the
	essence of setting boundary value problems for model classes of
	differential equations, the properties of digenvalues and digenfunctions
	of the Sturm Liouville problem. To be able to reduce boundary value
	of the Stuffi-Liouvine problem, to be able to reduce boundary value
	problems for differential equations to an equivalent integral equation in
	the shills to mean the existence of solutions to differential equations
	the skills to prove the existence of solutions to differential equations
	With variable discontinuous coefficients.
Content of the course	Differential equations with variable coefficients. Statement of boundary
	value problems. Eigenvalues and eigenfunctions of the one-dimensional
	Sturm-Liouville problem, their properties. Integral Equations in Spaces
	of Summable Functions. Reduction of boundary value problems to the
	study of integral equations. Alternatives to Fredholm.
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam,
	you must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Tikhonov A. N., Vasil'eva A. B., and Sveshnikov A. G., Differential
	Equations Moscow: Fizmatlit, 2002 253 p ISBN 5-9221-0134-X
	(in Russian)
	2. Sergeev I.N. Differential equations Moscow: Academy, 2013 286
	p. ISBN 978-5-7695-9606-3 (in Russian)
	3. Denisov A.M., Razgulin A.V., Ordinary differential equations:
	textbook / Moscow: MAKS Press, 2009 231 p. ISBN 978-5-317-
	02770-4 (in Russian)
	4. Vasilyeva A.B., Medvedev G.N., Tikhonov N.A., Urazgildina T.A.
	Differential and integral equations, calculus of variations in examples
	and problems / Moscow: Fizmatlit, 2005 432 p. ISBN 5-9221-0628-7
	(in Russian)

			~~
ſ	vioc	iule	22

	IVIO			
Module code and name	MATH52022 Nonlinear analysis in finite-dimensional space.			
Semester(s) in which the module is	Semester 2			
taught				
Person responsible for the module	R. Oinarov			
_	A.M. Temirkhano	ova		
	A.M. Abylaeva			
Language	Kazakh,Kazakh/R	lussian		
Connection with the curriculum (cycle,	Profile (Optional component)			
component)		_		
Type of teaching, contact hours	Seminars, SIW			
Workload	Lectures	Seminars	SIW	
	30	15	105	
Credit points	5 ECTS			
Requirements according to the	Perform all kinds of work (participation in lectures, active work at			
examination regulations	seminars, perform SIW, to hand in all kinds of control etc.) provided by			
	the module, the positive rating for the exam.			

Recommended prerequisites	Mathematical Analysis I
Module objectives/intended learning	To master the theoretical knowledge of nonlinear analysis in a finite-
outcomes	dimensional space, be able to analyse, prove, draw conclusions and
	apply the knowledge gained in research work. Be able to prove theorems
	and solve problems. Master the theory of differential and integral
	calculus of functions of many variables, numerical and functional series,
	trigonometric Fourier series, Fourier transforms, measures of sets in a
	finite-dimensional space. Be able to find extrema of functions of many
	variables and solve problems for differential and integral calculus of
	functions of many variables.
Content	Functions of many variables, implicit functions, differential and integral
	calculus of functions of many variables, numerical and functional series,
	trigonometric Fourier series, Fourier transforms, measure of sets in a
	finite-dimensional space, multiple and curvilinear integrals.
Study and examination requirements and	combined exam
forms of examination	
Media employed	Syllabus, educational guide, computer, projector, interactive whiteboard
Reading list	1. O. V. Besov, Lectures on Mathematical Analysis, Moscow Institute of
	Physics and Technology, Moscow, 2004. (in Russian)
	2. Nikolsky M. Course of mathematical analysis, 2001. (in Russian)
	3. Kudryavtsev L.D. Course of mathematical analysis, volume 2, 2003.
	(in Russian)
	4. Ulyanov P.L., Bakhvalov A.N. and other Real analysis in problems.
	FIZMATLIT, 2005. 416 pp. ISBN 978-5-9221-0595-8. (in Russian)
	5. Glazman I.M., Lyubich Yu.I. Finite-dimensional linear analysis.
	Moscow: Nauka, 1969. (in Russian)

Μ	odı	ıle	23
TAT.	vuu		

	Moune 25		
Course code and name	I MATH53023 Th 5302	2 Interpolation theory	
Semester(s) when the course is taught	2		
Persons responsible for the module	N.T. Tleukhanova,		
	A.N. Kopezhanova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle, component)	Profile (Optional compo	nent)	
Credit points (total by discipline)	5 ECTS		
Teaching methods	Case study, brainstormin cinquain method, interac method, lecture-conferen	ng, works in group, con ctive method, differenti- nce.	nmunicative method, ated approach, project
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures 30	Practical training 30	Self-study hours 105
Required and recommended	Functional analysis		
prerequisites for joining the course			
Module objectives/intended learning	To own conceptual appa	ratus of the theory of in	nterpolation methods for
outcomes	interpolation spaces, to be able to apply them to specific spaces		
	Lebesgue Lorentz weigh	ted spaces, to be able t	o work with abstract
	interpolation theorems.		
Content of the course	The discipline "Interpol	ation theory " is aimed	at studying the method
	of interpolation: Theorer	ns of Riesz - Torin, Ma	arcinkiewicz, Calderon,
	Pairs of spaces, intermed	liate, interpolation spac	es, definition of K-
	methods and its properties	es, definition of J - met	hods and its properties.
	As a result of training, u	ndergraduates receive s	skills to interpolation of
	the main functional space	es.	1 0 0 11 .
Examination forms	Two oral Midterm control	ol (40 minutes each) in	the form of a colloquium
	and control work. One fi	nal oral exam (60 minu	ites).

	1
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning	Multi-projector, presentations, maps, internet access for articles
tools	
Reading list	1. Trenogin VA Functional Analysis, 3rd edition, M .: FIZMATLIT,
	2002.
	2. H. Triebel Function Spaces. Basel; Boston: Birkhäuser Verlag, 2010
	(in Russian).
	3. <u>G. K. Mussabayeva</u> , <u>N. T. Tleukhanova</u> /Bochkarev inequality for the
	Fourier transform of functions in the Lorentz spaces L2,r(R)/
	EurasianMath. J., 2015, <u>V6, N1,</u> p. 76–84.
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=91
	76

Course code and name	MATH53024 Singular Integrals in Function Spaces
Semester(s) when the course is taught	2
Persons responsible for the module	Bokayev N.A.
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	5 ECTS
Teaching methods	Classical teaching method: lecturing and solving problems in the classroom.
Workload (incl. contact hours, self-	Total workload: 150 hours.
study hours)	Lectures: 15 hours, practical: 30 hours, independent work of students:
	105 hours.
Required and recommended	Functional Analysis, Harmonic Analysis
prerequisites for joining the course	
Module objectives/intended learning	Mastering by students the necessary mathematical apparatus of singular
outcomes	integrals, which helps to analyze, model and solve applied problems
	using modern technologies. / Mastering the apparatus of singular
	integrals by students and the ability to apply the acquired knowledge to
	solve problems of mathematical modeling.
Content of the course	The course covers the following sections: Functional spaces. Operators
	and functionals in function spaces. Nonincreasing permutation.
	maximum function. Hilbert transform. Limited in Lp. Calderón-Sigmund
	operators. Singular integral operators commuting with dilations. Riesz
	transformations. Conditions for boundedness of the Riesz potential in
	Lp.
	frequanties for potentials. The Hardy-Littlewood-Sobolev theorem on
	Poisson integrals and unit approximation
	Bessel potentials and its properties
Examination forms	Verhal
Study and examination requirements	Mandatory attendance by students of all classes according to the
	schedule: Preliminary preparation for classes: Timely completion and
	submission of SROs; Preparation for all types of classes should be
	independent, creative; Active work and manifestation of creativity
	during classes; Participation in all types of control; Commitment to the
	University's Academic Integrity Policy.

Technical and electronic learning tools	Interactive whiteboard, interactive whiteboard projector, computer.
Reading list	1. Stein I.M. Singular properties of functions and differential properties
	of functions. M.: MIR, 1973 342p.
	2.Stein I., Weiss G. Introduction to harmonic analysis in Euclidean
	spaces. M.: Mir 1984 280p.
	3. Kashin B., Sahakyan A. Orthogonal series. M.: Nauka, 2015 -320p.
	4. Triebel H. Functional spaces. M.: Mir 1986447p.
	5. Nikolsky S.M. Approximation of functions of several variables and
	embedding theorems. M.: Nauka 2009318p.

Course code and name	MATH53025 Spaces and rings
Semester(s) when the course is taught	2
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
	2. Abutalipova Sh.U., senior Persons responsible for the module,
	Candidate of Physical and Mathematical Sciences
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	5 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic
Workload (incl. contact hours, self-	Total workload: 150 hours.
study hours)	Lectures: 30 hours, practical: 15 hours, independent work of students:
	105 hours.
Required and recommended	The theory of groups
prerequisites for joining the course	
Module objectives/intended learning	To acquaint with the basic concepts and results of the theory of rings
outcomes	and spaces and the development of methods for solving problems using
	these theories.
	As a result of the course, students will know the basic definitions and
	statements of the theory of rings, the theory of linear spaces, be able to
	prove the main results and solve problems in this discipline.
Content of the course	Finite-dimensional spaces. Basis and dimension of space. Linear
	transformation. Image and kernel of linear transformation. Invariant
	subspaces. Nilpotent and semisimple transformations. Jordan form of a
	matrix. Euclidean and unitary spaces. Otrogonal transformations.
	Symmetric transformations. polar expansion. Ring. Subring. Ring ideal.
	Ring homomorphism. Kernel and image of a homomorphism. Factor
	ring. Theorems on ring homomorphisms.
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for lectures and practical exercises
	based on the materials of previous classes, teaching aids and relevant
	Reading list; timely fulfill and hand over the tasks of the IWS;
	participate in all types of control (current control, IWS control,
	boundary control, final control).
Technical and electronic learning tools	projector, laptop, screen, discipline syllabus, EMCD, textbooks and
	materials on topics.
Reading list	1. Kurosn A.G. Higher Algebra Course: Textbook. 23rd ed St.
	Petersburg: Lan, 2022 432 p. ISBN: 978-5-8114-4304-8
	2. vinderg E.B. Algedra course. M: MISNMO, 2019592 p. 978-5-
	4437-2004-3 2 Denvise Krivete V.V. Melnikov O.V. Lectures on elsekrever and
	5. Benyash-Krivets V.V., Melnikov U.V. Lectures on algebra: groups,
	1 mgs, neus Mmsk. DOU, 2008 110 p.

Module 26		
Code and name of the module	MATH 53026 Algebraic number theory in restoration problems	
Semester(s) in which the discipline is	2	
taught		
Persons responsible for the module(s)	N. Temirgaliev, N. Nauryzbaev, G. Taugynbaeva, A. Zh. Zhubanysheva	
Language	Kazakh/Russian	
Connection with the curriculum	Profile (Optional component)	
(cycle, component)		
Credit scores (by discipline)	5 ECTS	
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with	
	scientific Reading list, offline and online consultations	
Workload (incl. contact hours, hours	Total workload: 150 hours.	
of independent work) contact hours	Lectures: 15 hours, practical: 30 hours, independent work of students:	
	105 hours.	
Necessary and recommended	Mathematical analysis, Algebra and number theory, Complex analysis	
prerequisites for joining the module		
The purpose of the discipline/	Acquaintance with the necessary concepts of algebraic number theory	
expected learning outcomes	and their application in problems of numerical integration and recovery	
	of functions	
Content of the discipline	The idea of applying algebraic number theory in the geometry of numbers and in problems of analysis, necessary information from algebraic number theory, setting the problem of numerical integration	
	and recovery of functions, uniformly distributed Korobov's grids, a brief overview of number-theoretic methods in numerical integration, about quadrature formulas related to divisors fields of Gaussian numbers	
	equivalent conditions for the uniform distribution of Korobov grids, an	
	algorithm for construction a grids close to critical, an algorithm for construction uniformly distributed Korobov's grids in the case of dimension loss than 18 an algorithm for construction uniformly	
	distributed Korobov's grids for arbitrary dimensions,	
Exam Forms	Oral exam	
Requirements for training and exams	Attendance at all classroom sessions, fulfillment of independent work of a student, assignments of all types of controls (current, intermediate and final)	
Technical and electronic learning tools	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic textbooks	
Reading list	1. Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik. Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah	
	vostanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i	
	Algebraic number theory and harmonic analysis in recovery problems	
	(Quasi-Monte Carlo method). The theory of embeddings and	
	vypusk, posvjashhennyj nauchnym dostizhenijam matematikov ENU im.	
	L. N. Gumilyova [Bulletin of L. N. Gumilyov Eurasian National University. Special issue devoted to the scientific achievements of	
	mathematicians L. N. Gumilev ENU], 1-194 (2010).	
	organicheskom edinstve v kontekste napravlenij issledovanij	
	[Continuous and discrete mathematics in organic unity in the context of research directions], Jelektronnoe izdanie. ITMiNV. Astana, 2018.	

3. Temirgaliyev N. Matematika: Izbrannoe. Nauka // pod red. B. S.
Kashina [Mathematics: Selected. Science//under the editorship of B. S.
Kashin]. Astana: L.N.Gumilyov ENU publishing house, 2009, 613 p.
4. Temirgaliev N. Application of divisor theory to approximate recovery
and integration of multivariable periodical functions // Doklady
Akademii Nauk SSSR, 1990, Vol.310, No5, P. 1050-1054
5. Zhubanysheva A. Zh., Temirgaliev N., Temirgalieva Zh. N.
Application of divisor theory to the construction of tables of optimal
coefficients for quadrature formulas //Computational mathematics and
mathematical physics, 2009, Vol. 49, No1, P. 12-22.
6. Bailov E.A., Sikhov M.B., Temirgaliev N. General Algorithm for the
Numerical Integration of Functions of Several Variables //
Computational mathematics and mathematical physics, 2014, Vol. 54,
No. 7. P. 1061–1078.

Module 27			
Course code and name	MATH 53027 The singular differential equations		
Semester(s) when the course is taught	2		
Persons responsible for the module	1. K.N. Ospanov		
	2. R.D. Akhmetkaliyeva		
Language	Kazakh/Russian		
Connection with the curriculum (cycle, component)	Profile (Optional component)		
Credit points (total by discipline)	5 ECTS		
Teaching methods	explanatory-illustrative, information-reporting, partial-search, reproductive		
Workload (incl. contact hours, self-study	Total workload: 210		
hours)	Lectures Practical training Self-study hours		
	30 15 105		
Required and recommended	Ordinary differential equations		
prerequisites for joining the course			
Module objectives/intended learning	- know the methods of the theory of differential equations, elements of the		
outcomes	theory of generalized functions, understand the essence of generalized		
	derivatives, generalized solutions of a differential equation		
	- to own the methods of studying singular differential equations for their		
	application in research work and the application of theorems of functional		
	analysis to find generalized solutions.		
	- be able to prove a priori estimates for solutions of the simplest		
	differential equations and the solvability of equations with an operator		
	with a closed range of values,		
Content of the course	Equation with a closed operator and a dense domain in a Banach space.		
	Adjoint equation in a Banach space. A priori estimates. Equations with a		
	finite defect. Noetherian equations, index		
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium		
	and control work. One final oral exam (60 minutes).		
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the		
	recording of lecture notes, work at the blackboard, homework and		
	independent work. The final grade in the module consists of 40% of the		
	progress in the exams, 60% of the admission rating. Tolerance rating is		
	the arithmetic mean of midterm controls, including 50% of the current		
	rating and 50% of intermediate controls. To be admitted to the exam, you		
	must have an admission rating of 50 points or higher.		
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.		

Reading list	1. K.N. Ospanov, Singular differential equations, Almaty, 69 p., 2017 (in
	Kazakh)
	2. Otelbaev, M. To the formulas for the distribution of eigenvalues of
	singular differential operators // Collection of selected scientific papers
	published in 1972-2011 - Astana: L.N. Gumilyov, 2012 P.24-30.
	3. S.A. Abdymanapov, G.A.Esenbayeva, M.T.Kosmanova Equations of
	Mathematical Physics AlmatyRauan, 2001161. (in Russian)
	4. Muratbekov M.M. Separability and spectral properties of singular
	differential operators of mixed type: // Almaty: Evero, 2019 141 p
	ISBN 978-601-7528-92-8. (in Russian)
	5. M. Aldai, K.R. Myrzataeva, Introduction to simple differential
	equations: textbook / - Almaty: Evero, 2020 207 p ISBN 978-601-
	310-780-5. (in Kazakh)

	Wodule 20	
Course code and name	MATH 53028 Generalized Morrey spaces and their application	
Semester(s) when the course is taught	2	
Persons responsible for the module	Y.D. Nursultanov,	
	A. K. Kopezhanova	
Language	Kazakh/Russian	
Connection with the curriculum (cycle,	Profile (Optional component)	
component)		
Credit points (total by discipline)	5 ECTS	
Teaching methods	Case study, brainstorming, works in group, communicative method,	
	cinquain method, interactive method, differentiated approach, project	
	method, lecture-conference.	
Workload (incl. contact hours, self-study	Total workload: 150	
hours)	Lectures Practical training Self-study hours	
	30 30 105	
Required and recommended	Functional Analysis, Harmonic Analysis	
prerequisites for joining the course		
Module objectives/intended learning	To master definition of space of Morrey, properties of spaces of Morrey,	
outcomes	to be capable to the proof of interpolation theorems of space of Morrey, to	
	be capable to apply them at the solution of specific objectives.	
Content of the course	Undergraduates are taught the Lebesgue, Lorenza spatial definition and	
	basic properties, introductory theorems. In addition, Hölder, Minkowski,	
	Young-O'Neil, inequalities are studied. Given basic inequalities in	
	different functional spaces. During this course the undergraduates acquire	
	the skills of understanding and applying different inequalities.	
Examination forms	final oral exam.	
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the	
	recording of lecture notes, work at the blackboard, homework and	
	independent work. The final grade in the module consists of 40% of the	
	progress in the exams, 60% of the admission rating. Tolerance rating is	
	the arithmetic mean of midterm controls, including 50% of the current	
	rating and 50% of intermediate controls. To be admitted to the exam, you	
	must have an admission rating of 50 points or higher.	
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles	

Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Dorothee Haroske, Thomas Runst, Hans-Jürgen Schmeisser. Function
	Spaces, Differential Operators and Nonlinear Analysis: The Hans Triebel
	Anniversary Volume, Birkhäuser Basel, 2012.
	3. R.E. Edwards. Fourier Series: A Modern Introduction Volume 1,
	Springer New York, 2011.
	4. R. E. Edwards. Fourier Series: A Modern Introduction Volume 2,
	Springer New York, 2011.
	5. Zorich V.A. Mathematical analysis Moscow: Center for Continuing
	Mathematical Education, 2012 (in Russian).
	6. Trenogin V.A. Functional Analysis, 3rd edition, M .: FIZMATLIT,
	2002 (in Russian).

Course code and name	MATH53029 The theory	y of measure	
Semester(s) when the course is taught	2		
Persons responsible for the module	L.K. Kusainova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	nent)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	Lectures, practical classe	S	
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	The theory of measure		
prerequisites for joining the course			
Module objectives/intended learning	Read a course of lecture	es covering the basic pr	rinciples of constructing a
outcomes	regular measure on the	example of the Lebe	esgue measure/ Complete
	mastering of the course 1	read. The possibility of	independent development
	of the general theory of	measure as an extension	on of the function of a set
	given on an arbitrary sem	nicircle.	
Content of the course	Systems of sets. A half-r	ing. Ring. σ is a ring. Fu	inctions of sets. Additive
	function of sets (measure	e) on the ring of element	tary sets. Construction of
	an external measure μ^* .	Construction of a σ -ring	of μ measurable sets.
	Properties. Extension of	μ^* to the Lebesgue mea	sure. Properties of the
	Lebesgue measure.		<u></u>
Examination forms	Oral examination (theore	tical and practical tasks	
Study and examination requirements	Timely completion of tas	sks on the subject under	study, independent work
Technical and electronic learning tools	Textbooks, manuals, mor	nographs on electronic	media
Reading list	1. A.N., Kolmogorov, S.	V., Fomin. Elements of	the theory of functions
	and functional analysis.	Publisher: M.: Fizmatlit	; 7th edition, 2004.(in
	Russian) $2 \in \mathcal{M}(\Sigma^2)$	C 1°CC (° 1	1. 1 1 1
	2. G.M. Fichtenholz, "C	ourse of differential and	i integral calculus
	(volume 2). (in Kussian)		
	3. P. Halmosh. The theor	y of measure.	
	4. G.E. Shilov, B.L. Gure	evich. Integral, Measure	e and Derivative: General
	Theory Ed. 2, reprint 196	o/.	

Module	29
--------	----

	Module 30
Module code and name	MATH 53030 Weighted inequalities of Hardy type
Semester(s) in which the module is	Semester 2
taught	

Person responsible for the module	R. Oinarov
-	A.M. Temirkhanova
	A.M. Abylaeva
Language	Kazakh/Russian/English
Relation to curriculum	Elective
Teaching methods	explanatory-illustrative, information-reporting
Workload (incl. contact hours, self-study	Total workload: 150
hours)	Lectures Seminars SIW
	30 15 105
Credit points	5 ECTS
Required and recommended	Functional analysis
prerequisites for joining the module	
Module objectives/intended learning	The main objective of the course is to acquaint with theoretical material
outcomes	and teach undergraduates to apply modern research methods to the
	problems of determining conditions for boundedness of Hardy-type
	operators in weighted spaces. To know methods of proving the fulfilment
	of weighted inequalities of Hardy type;
	To be able to prove the classical inequalities of analysis, necessary and
	sufficient conditions for the weight of the Hardy inequalities with different
	parameters and different weights for their use in research. To develop
	skills and abilities in solving problems of assessing the norms of Hardy
	operators and acquire research skills.
Content	The discipline "Weighted Hardy-type inequalities" is a continuation of the
	theory of linear operators and is aimed at studying integral and discrete
	weighted Hardy-type inequalities, establishing their necessary and
	sufficient conditions, and estimating the norms of integral and discrete
	Hardy-type operators. In the process of learning, undergraduates must
	master the basic methods for establishing necessary and sufficient
	conditions for Hardy's integral and discrete inequalities and acquire
	research skills.
Exams and assessment formats	Two oral Midterm control in the form of a colloquium in 7^{th} and 15^{th}
	weeks. Colloquium ticket has 2 questions (25 minutes for each question).
	One final oral exam (50 minutes).
Study and examination requirements and	Current control is estimated weekly, is estimated at 100 points, which
forms of examination	includes the recording of lecture notes, work at the blackboard, homework
	and independent work. 60% of the admission rating. The final grade in the
	module consists of 40% of the progress in the exams. The admission
	rating is the arithmetic mean of midterm controls, including 50% of the
	current rating and 50% of intermediate controls. To be admitted to the
	exam, you must have an admission rating of 50 points or higher.
Reading list	1. G. Hardy, JE Littlewood G. Polya inequality. M .: Gos. ed. foreign.
	Litas. 1978 (in Russian).
	2. V.A. Sadovnichy Operator theoryM .: Ed. Moscow State University,
	1986 (in Russian).
	5. OPIC B., KUINER A. Hardy-type inequalities // Pitman Research Notes in
	Mathematics Series, Longman Scientific & Technical, Harlow, 1990.
	4. Kulher A., Persson LE. weighted inequalities of Hardy type//
	London-Singapore, "World Scientific", 2003.
	5. Stepanov V.D weighted norm inequalities of Hardy type for a class of integral encoder $1/1$ L on dot. Mult Sec. 50(1004), 105-100
	integral operators// J.London Math.Soc, 50(1994), 105-120.

Module 31	
mouule of	

	Would 51
Course code and name	MATH 53031 Fourier series in the regular system
Semester(s) when the course is taught	2
Persons responsible for the module	N.T. Tleukhanova,
	G.K.Mussabayeva

Language	Kazakh/Russian	
Connection with the curriculum (cycle,	Profile (Optional component)	
component)		
Credit points (total by discipline)	5 ECTS	
Teaching methods	Case study, brainstorming, works in group, communicative method,	
	cinquain method, interactive method, differentiated approach, project	
	method, lecture-conference.	
Workload (incl. contact hours, self-study	Total workload: 150	
hours)	Lectures Practical training Self-study hours	
	30 30 105	
Required and recommended prerequisites	Mathematical Analysis II.	
for joining the course		
Module objectives/intended learning	To master definitions of orthogonal ranks, trigonometric ranks, regular	
outcomes	ranks, their properties, Fourier's ranks on regular systems, to be capable	
	to apply methods of regular ranks in the theory of animators, theories of	
	multipliers, in the theory of functional spaces.	
Content of the course	Orthogonal series. Trigonometric Fourier series, properties, sufficient	
	convergence conditions. Regular system. Examples. Multipliers,	
	multipliers for regular systems.	
Examination forms	Oral exam	
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the	
	recording of lecture notes, work at the blackboard, nomework and	
	independent work. The final grade in the module consists of 40% of the programs in the average 60% of the admission rating. Tolerance rating is	
	progress in the exams, 60% of the admission rating. Tolerance rating is	
	the antimetic mean of midterin controls, including 50% of the current	
	Tailing and 50% of intermediate controls. To be admitted to the exam,	
Technical and electronic learning tools	Multi projector, presentations, many internet access for articles	
Reading list	1 B S Kashin A A Saalyan Orthogonal Series American	
Reading list	Mathematical Soc. 2005	
	2 Nursultanov F D "On the coefficients of multiple Fourier series	
	from I n-snaces" Izv Ross Akad Nauk Ser Mat 64.1 (2000) 95–122	
	3 Nursultanov E. D., Tleukhanova N. T., "Lower and upper bounds for	
	the norm of multipliers of multiple trigonometric Fourier series in	
	Lebesgue spaces", Funktsional, Anal. i Prilozhen., 34:2 (2000), 86–88	
	http://www.mathnet.ru/php/person.phtml?option lang=rus&personid=9	
	176	

	Μ	odule 32	
Course code and name	MATH 53032 Bi	nary Analysis	
Semester(s) when the course is taught	2		
Persons responsible for the module	Bokayev N.A.		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional	component)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	Classical teaching	g method: lecturing and	d solving problems in the
	classroom.		
Workload (incl. contact hours, self-study	Total workload: 1	50	
hours)	Lectures	Seminars	SIW
	30	15	105
Required and recommended	Functional Analys	sis, Harmonic Analysi	s
prerequisites for joining the course			

Module objectives/intended learning outcomes	Mastering by students the necessary mathematical apparatus that helps to analyze, model and solve applied problems using binary analysis. / Mastering the apparatus of binary analysis by students and the ability to apply the acquired knowledge to solve problems of mathematical modeling.
Content of the course	The course covers the following sections of binary analysis: Walsh and Haar systems. Properties of the Fourier-Walsh, Fourier-Haar coefficients. Fourier-Walsh transform and their properties. Properties of partial sums of Fourier-Walsh, Fourier-Haar series. Conditions for the convergence of the Fourier-Walsh, Fourier-Haar series. Walsh and Haar series with monotonic coefficients. Direct and inverse theorems for the approximation of a function by Walsh polynomials and Haar polynomials Hadamard-ordered Walsh-Hadamard transform and their applications to signal processing.
Examination forms	Verbal
Study and examination requirements	Mandatory attendance by students of all classes according to the schedule; Preliminary preparation for classes; Timely completion and submission of SROs; Preparation for all types of classes should be independent, creative; Active work and manifestation of creativity during classes; Participation in all types of control; Commitment to the University's Academic Integrity Policy.
Technical and electronic learning tools	Interactive whiteboard, interactive whiteboard projector, computer.
Reading list	 Golubov B.I., Efimov A.V., Skvortsov V.A. Walsh series and transformations. Theory and applications. M.: Nauka, 201. – 420p. Shipp, Wade, Simon. walsh series. 1990. – 560p. Kashin, Sahakyan. orthogonal rows. Golubov B.I. Elements of Binary Analysis. 2010, - 210p. Ahmed N., Rao K.R. Orthogonal transformations in the processing of digital signals M.: Svyaz, 1980.

	niouule ee
Course code and name	MATH 53033 Lie algebras and their automorphisms
Semester(s) when the course is taught	2
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
	2. Abutalipova Sh.U., senior Persons responsible for the module,
	Candidate of Physical and Mathematical Sciences
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	5 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic
Workload (incl. contact hours, self-study	Total workload: 150 hours.
hours)	Lectures: 30 hours, practical: 15 hours, independent work of students: 105
	hours.
Required and recommended	Group theory, Finite Abelian groups
prerequisites for joining the course	
Module objectives/intended learning	To acquaint with the basic concepts and results of the theory of Lie
outcomes	Algebras and their automorphisms.
	As a result of the course, students will know the basic definitions and
	statements of the theory of Lie algebras and their automorphisms, be able
	to prove the main results and solve problems in the discipline.

Content of the course	Free algebras. Varieties. Algebras free in variety. Free associative algebra.
	Free Lie Algebra. Basis of a free Lie algebra. The universal enveloping
	algebra of a free Lie algebra. The Poincaré-Birkhoff-Witt theorem
	Subalgebras of a finitely generated free Lie algebra. Automorphisms of a
	free Lie algebra of finite rank. Tame automorphisms. Kohn's theorem.
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for lectures and practical exercises
	based on the materials of previous classes, teaching aids and relevant
	Reading list; timely fulfill and hand over the tasks of the IWS; participate
	in all types of control (current control, IWS control, boundary control,
	final control).
Technical and electronic learning tools	projector, laptop, screen, discipline syllabus, EMCD, textbooks and
	materials on topics.
Reading list	1. Hall J.I. Introduction to Lie Algebras. –2015. 131 p.
	2. Vinberg E.B. Algebra course. M: MTsNMO, 2019592 p. 978-5-4439-
	2804-3
	3. Humphreys J. Introduction to the theory of Lie algebras and their
	representations / translated from English. B.R. Frenkin M.: MTSNMO,
	2003216 p.

Module 34		
Module code and name	MATHP53034 Problems of numerical integration in the context of a computer (computing) diameter	
Semester(s) in which the discipline is taught	2	
Persons responsible for the module(s)	N.Temirgaliyev, N. Nauryzbayev, G.Taugynbayeva, A.Zh.Zhubanysheva	
Language	Kazakh/Russian	
Connection with the curriculum (cycle, component)	Profile (Optional component)	
Credit scores (by discipline)	5 ECTS	
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with scientific Reading list, offline and online consultations	
Workload (incl. contact hours, self-	Total workload: 150	
employment hours) contact hours	Lectures Seminars SIW	
	30 15 105	
Required and recommended prerequisites for attaching to the module	Mathematical Analysis, Algebra, Complex Analysis, Functional Analysis	
The purpose of the discipline / expected learning outcomes	Introduction to the methods of numerical integration of functions from multidimensional classes in the context of Computational (Numerical) diameter	
The content of the discipline	Formulation of the numerical integration problem, number-theoretic methods in numerical integration problems, divisor theory in numerical integration problems, tensor product method of functionals in numerical integration problems, Smolyak quadrature formulas, numerical integration of infinitely differentiable functions	
Exam Forms	Oral examination	
Tuition and Exam Requirements	Attendance at all classroom sessions, fulfillment of independent work of a	
	student, assignments of all types of controls (current, intermediate and final)	
Technical and electronic learning aids	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic textbooks	

Reading list	1. Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik.
	Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah
	vosstanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i
	priblizhenij. Rjady Fur'e [Computational (Numerical) diameter. Algebraic
	number theory and harmonic analysis in recovery problems (Quasi-Monte
	Carlo method). The theory of embeddings and approximations. Fourier
	series.], Vest. ENU im. L. N. Gumileva. Spec. vypusk, posvjashhennyj
	nauchnym dostizhenijam matematikov ENU im. L. N. Gumilyova
	[Bulletin of L. N. Gumilyov Eurasian National University. Special issue
	devoted to the scientific achievements of mathematicians L. N. Gumilev
	ENU], 1-194 (2010).
	2. Temirgaliyev N. Neprervynaja i diskretnaja matematika v
	organicheskom edinstve v kontekste napravlenij issledovanij [Continuous
	and discrete mathematics in organic unity in the context of research
	directions], Jelektronnoe izdanie. ITMiNV. (postojanno dopolnjaemyj po
	novym rezul'tatam i sootyetstyenno po novym i utochniaemym
	postanovkam zadach – iz-za laviny rezul'tatov poslednih let vse vremja
	otodvigaemvi) [Electronic edition. IThMandSC. (constantly supplemented
	by new results and accordingly on new and more refined statements of
	problems - because of the avalanche of the results of recent years).
	Astana, 2018.
	3. Temirgalivev N. Matematika: Izbrannoe, Nauka // pod red, B. S.
	Kashina [Mathematics: Selected, Science//under the editorship of B. S.
	Kashin], Astana: L.N.Gumilvoy ENU publishing house, 2009, 613 p.
	4 Koroboy N M Theoretic-Numerical Methods in Approximate
	Analysis 2nd revised and extended edition (MTsNMO Moscow 2004)
	[in Russian]
	5 Bailov E A Sikhov M B Temirgaliev N General Algorithm for the
	Numerical Integration of Functions of Several Variables // Computational
	mathematics and mathematical physics 2014 Vol 54 No 7 P 1061–
	1078
	6 Nurmoldin E E Restoration of functions integrals and solutions to the
	heat conductivity equation from the III'vanov U ₂ -classes (Russian) //Sib
	The Vychist Mat 2005 Vol 8 No 4 P 337-351
	7 Temirgaliev N Classes $\mu(a, a)$ and auadrature formulas //Dockland
	7. Terminganev IV. Classes $U_s(\beta, \theta, \alpha; \psi)$ and quadrature formulas // Dockland
	mathematics 2003 Vol 68 No 3 P 414-415

Module 55			
Course code and name	MATH 53035 E	xpansion and contraction of 1	inear operators
Semester(s) when the course is taught	2		
Persons responsible for the module	1. K.N. Ospanov		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional	component)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	explanatory-illustr	cative, information-reporting,	partial-search,
	reproductive		
Workload (incl. contact hours, self-study	Total workload: 1	50	
hours)	Lectures	Practical training	Self-study hours
	30	15	105
Required and recommended	Ordinary different	ial equations	
prerequisites for joining the course			

Module objectives/intended learning	- know the basic methods of functional analysis, theory of linear operators
outcomes	and theories of differential equations;
	- to own the basic methods of the theory of representation of correct
	restrictions and regular extensions of linear operators in a Hilbert space
	and applications of the obtained abstract theorems to differential
	equations, construct correct restrictions and extensions of linear operators
	in a Hilbert space;
	- be able to investigate non-self-adjoint operators, classify by spectral
	features and prove the completeness or basicity of the system of root
	vectors of a linear operator.
Content of the course	Minimum and maximum operator concepts. Extension theory for
	symmetric operators. Regular extension for elliptic equations. Abstract
	theorems on correct restrictions of the maximal operator. Abstract
	theorems on correct extensions of the minimal operator. Abstract
	theorems on regular extensions. Applications of abstract theorems to
	concrete differential operators.
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Sadovnichiy V.A. The theory of operators: textbook Ed. 4th, rev. and
	additional - Moscow: Bustard, 2001 381, - ISBN 5-7107-4297-X. (in
	Russian)
	2. V.A. Trenogin, B.M. Pisarevsky, T.S. Sobolev. Functional analysis: in
	2 volumes: textbook Moscow: Academy, 2012 239 p ISBN 978-5-
	7695-9136-5 (in Russian)
	3. Otelbaev, M. On the formulas for the distribution of eigenvalues of
	singular differential operators // Collection of selected scientific papers
	published in 19/2-2011 - Astana: L.N. Gumilyov, 2012 S.24-30.
	4. Biliev N. Functional analysis (kyskasha course): okulyk / Almaty:
	Kazakh university, 2014. – 164 p ISBN 978-601-04-0336-9 (in Kazakh)

	Module	36	
Course code and name	MATH53036 Net space	es and their application	
Semester(s) when the course is taught	2		
Persons responsible for the module	Y.D. Nursultanov,		
	A. K. Kopezhanova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	onent)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	Case study, brainstormin	ng, works in group, com	nmunicative method,
	cinquain method, interac	ctive method, differentia	ated approach, project
	method, lecture-conferen	nce.	
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	Functional Analysis, Ha	rmonic Analysis.	
prerequisites for joining the course			

Module objectives/intended learning	To master definitions of the main functional spaces, anisotropic spaces,
outcomes	interpolation spaces, their properties, interpolation methods, multiple
	parameter interpolation methods; to be capable to apply methods of
	interpolation spaces to Lebegue's concrete spaces, Net spaces, Lorentz
	spaces, to weight spaces.
	Cubature formulas for functions from network spaces will be studied,
	methods for forecasting economic problems will be developed on the
	basis of these cubature formulas.
Content of the course	Introduces the Net Space and its Properties in the proposed subject. Also,
	the interpolation properties of Net spaces, the definition and properties of
	the generalized Net Spaces are given. In the learning process,
	undergraduates should be trained in studying and using Net spaces.
Examination forms	Oral exam
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Triebel Interpolation theory, function spaces, differential operators
	Huthig Pub Limited 1995.
	3 Nursultanov ED, "Interpolation theorems for anisotropic spaces and
	their applications", Kazakh/Russian Academy of Sciences reports, 394: 1
	(2004), 22-25 (in Russian).
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=858
	5

Module 37			
Course code and name	MATH53037	Weighted space of functions wh	ole smoothness
Semester(s) when the course is taught	2		
Persons responsible for the module	L.K. Kusainov	a	
Language	Kazakh/Russia	in	
Connection with the curriculum (cycle,	Profile (Option	nal component)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	Lectures, pract	ical classes	
Workload (incl. contact hours, self-study	Total workload	1: 150	
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	Functional ana	lysis	
prerequisites for joining the course			
Module objectives/intended learning	A special cours	se dedicated to the basic provisio	ns of the theory of spaces
outcomes	of Bessel poter	ntials and the construction of new	functional spaces.
	Extension of k	nowledge in the theory of function	onal spaces.
Content of the course	Function of ler	$hgth \ 0 < h(x) \le 1. \text{ Immersion ar}$	nd oscillation conditions.
	The Bezikovic	h double covering of the area Ω a	and the unit
	partition.Space	es of potentials H_p^s . Determination	n of the weight space of
	potentials H_p^s	$\Omega; \rho, v_s)$. The correctness of the σ	definition. Sobolev weight
	spaces $W_p^m(\Omega)$; v_m). Embedding theorems of sp	baces $H_p^s(\Omega; \rho, v_s)$.
Examination forms	Oral examinati	on (theoretical and practical task	(s)
Study and examination requirements	Timely comple	etion of tasks on the subject unde	r study, independent work
Technical and electronic learning tools	Textbooks, ma	nuals, monographs on electronic	media

Reading list	1. X.Tribel. Interpolation theory, functional spaces, differential operators,
	Mir Publishing House, 1980.
	2. L.K., Kusainova, Ya.T., Sultanaev, G. Murat. Approximative estimates
	for a single differential operator in a weighted Hilbert space Differential
	equations. 2019. 55 (12).
	3. Kusainova L.K. On the interpolation of Sobolev weight spaces. //
	Izv.Ministry of Science – Academy of Sciences of the Republic of
	Kazakhstan. Ser.physmat. 1997. No. 5.

	Module 38		
Module code and name	MATH62038 Linear analysis in finite-dimensional space		
Semester(s) in which the module is	Semester 3		
taught			
Persons responsible for the module	R. Oinarov		
	A.M. Temirkhanova		
	A.M. Abylaeva		
Language	Kazakh,Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional component)		
component)			
Workload	Lectures Seminars SIW		
	30 15 105		
Credit points	5 ECTS		
Requirements according to the	Perform all kinds of work (participation in lectures, active work at		
examination regulations	seminars, perform SIW, to hand in all kinds of control etc.) provided by		
	the module, the positive rating for the exam.		
Recommended prerequisites	Mathematical Analysis II		
Module objectives/intended learning	To master the theory of linear spaces, to be able to locate the conditions of		
outcomes	compatibility of a system of linear equations, solve linear systems, an		
	orthonormal basis in the nite-dimensional space, eigenvalues and		
	eigenvectors of linear operators in finite-dimensional space.		
Content	The discipline "Linear analysis in a finite-dimensional space" is aimed at		
	studying the properties of finite-dimensional spaces and the properties of		
	linear operators in line-dimensional spaces, linear spaces, bases and		
	cumensions of linear spaces, a finite-dimensional orthogonal basis in		
	ef a linear operator, characteristic polynomial of a linear operator, solf		
	of a linear operator, characteristic polynomial of a linear operator, sen-		
	aujoint inteal operators in Euclidean space, norms of a inteal operator, and		
Study and examination requirements and	combined exam		
forms of examination			
Media employed	Syllabus educational guide computer projector interactive whiteboard		
Reading list	1 V A Ilvin and F G Poznyak Linear Algebra 2007		
Kedding list	2 Glazman I M I vubich Yu I Finite-dimensional linear analysis		
	Moscow Nauka 1969		
	3. Gelfand I.M. Lectures on linear algebra. Ed.3. Nauka, 1966		
	4. Khalmosh P. Dimensional vector space, Fizmatgiz, 1963.		

	Module 39
Module code and name	MATH63039 Boundedness of integral and matrix operators
Courses, if applicable	2
Semester(s) in which the module is	Semester 3
taught	
Persons responsible for the module	R. Oinarov
	A.M. Temirkhanova
	A.M. Abylaeva
Language	Kazakh/Russian

Connection with the curriculum (cycle,	Profile (Optional	component)		
component)				
Workload	Lectures	Seminars	SIW	
	30	30	120	
Credit points	6 ECTS			
Requirements according to the	Perform all kinds	of work (participation	in lectures, active work at	
examination regulations	seminars, perform	seminars, perform SIW, to hand in all kinds of control etc.) provided by		
	the module, the po	ositive rating for the ex	kam.	
Recommended prerequisites	Functional Analys	sis		
Module objectives/intended learning	To form a system	of knowledge about li	near integral and matrix operators	
outcomes	and their propertie	es. The main objective	of the course is to introduce	
	theoretical materia	al and teach undergrad	luates to apply modern research	
	methods to the pro	oblems of determining	the boundedness conditions for	
	integral and matri	x operators in weighte	d Lebesgue spaces for various	
	parameters and we	eights.		
Content	Discipline "Bound	ledness of integral and	l matrix operators" is aimed at	
	studying the prope	erties of boundedness	and compactness of some classes	
	of integral and ma	trix operators in funct	ional spaces. In the process of	
	learning, undergra	duates should learn th	e basic methods for establishing	
	the properties of in	ntegral and matrix ope	erators in various functional	
	spaces, as well as	methods for assessing	their norms and acquire research	
	skills.			
Study and examination requirements and	oral exam			
forms of examination				
Media employed	Syllabus, educatio	nal guide, computer, j	projector, interactive whiteboard	
Reading list	1. Kufner A., Pers	son LE. Weighted in	equalities of Hardy type//	
	London-Singapor	e, "World Scientific".	2003.	
	2. V. A. Sadovnic	hy, Operator Theory.	5th ed. Bustard, 2004. 384 pp.	
	ISBN 5-7107-869	9-3.		
	3. Krasnoselsky N	I.A. Integral operators	in spaces of summable functions	
	- M.: Nauka. 2005	5S. 499.		
	4. R. Oinarov, "Be	oundedness and comp	actness of integral operators of	
	Volterra type," Sil	b. math. j., 48:5 (2007), 1100–1115.	
	5. Temirkhanova	A. M., Beszhanova A.	T., Boundedness and	
	compactness of a	certain class of matrix	operators with variable limits of	
	summation, Euras	ian Math. J. 11:4 (202	.0), 66–75.	
	6. Oinarov R., Per	sson LE., Temirkhau	nova A. M., Weighted inequalities	
	for a class of matr	ix operators: the case	// Mathematical Inequalities and	
	Applications Cr	oatia, 2009 V. 12	No. 4 P. 891-903.	

	Module	40	
Course code and name	MATH63040 Summab	ility of multiple Fourier	series
Semester(s) when the course is taught	3		
Persons responsible for the module	N.T. Tleukhanova,		
	A.N. Kopezhanova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	nent)	
component)			
Credit points (total by discipline)	6 ECTS		
Teaching methods	Case study, brainstormir	ig, works in group, comm	nunicative method,
	cinquain method, interac	tive method, differentiat	ed approach, project
	method, lecture-conferen	nce.	
Workload (incl. contact hours, self-study	Total workload: 180		
hours)	Lectures	Practical training	Self-study hours
	30	30	120

Required and recommended	Mathematical Analysis II.
Madula abiastivas/intended lasming	To moster methods of triconometrical region of Fourier Fourier's
Module objectives/intended learning	To master methods of trigonometrical ranks of Fourier, Fourier's
outcomes	transformation for application in the theory of animators, the theory of
	multipliers, in the theory of functional spaces. To master the theory of
	orthogonal ranks, multiple trigonometrical ranks, Fourier's multiple ranks
	on trigonometrical system, to be capable to apply methods of multiple
	trigonometrical ranks of Fourier, in the theory of animators, the theory of
	multipliers, in the theory of functional spaces.
Content of the course	Orthogonal series. Multiple trigonometric Fourier series, properties,
	sufficient convergence conditions. Multipliers, multipliers for multiple
	trigonometric systems. Fourier transformation. Properties.
Examination forms	Oral exam
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. B. S. Kashin, A. A. Saakyan, Orthogonal Series, American
	Mathematical Soc., 2005.
	2.Nursultanov E. D., "On the coefficients of multiple Fourier series
	from Lp-spaces", Izv. Ross. Akad. Nauk Ser. Mat., 64:1 (2000), 95–122
	3.Nursultanov E. D., Tleukhanova N. T., "Lower and upper bounds for
	the norm of multipliers of multiple trigonometric Fourier series in
	Lebesgue spaces" 34:2 (2000), 86–88
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=917
	6

Course code and name	MATH 63041 The theory of Function approximation theory			
Semester(s) when the course is taught	3			
Persons responsible for the module	Bokayev N.A.	Bokayev N.A.		
Language	Kazakh/Russian			
Connection with the curriculum (cycle,	Profile (Optional compo	onent)		
component)				
Credit points (total by discipline)	6 ECTS			
Teaching methods	Classical teaching method: lecturing and solving problems in the			
	classroom.			
Workload (incl. contact hours, self-study	Total workload: 180			
hours)	Lectures	Practical training	Self-study hours	
	30	30	120	
Required and recommended	Functional Analysis, Ha	rmonic Analysis		
prerequisites for joining the course				
Module objectives/intended learning	Students mastering the apparatus of the theory of approximation of			
outcomes	functions, the ability to analyze and apply the knowledge gained to solve			
	problems of mathematic	al modeling.		

Content of the course	The course covers the following sections: Polynomials of the best	
	approximation. Moduli of continuity and their properties. Approximation	
	of periodic functions by trigonometric polynomials. Approximations of	
	functions by algebraic polynomials. Weipstrass' first and second	
	theorems. Direct and inverse theorems of approximation theory. Relation	
	between the modulus of continuity and best approximations. Bernstein's	
	inequality. Polynomials deviating least from zero. Chebyshev	
	polynomials	
Examination forms	Verbal	
Study and examination requirements	Mandatory attendance by students of all classes according to the schedule;	
	Preliminary preparation for classes; Timely completion and submission of	
	SROs: Preparation for all types of classes should be independent, creative;	
	Active work and manifestation of creativity during classes: Participation	
	in all types of control: Commitment to the University's Academic	
	Integrity Policy.	
Technical and electronic learning tools	Interactive whiteboard, interactive whiteboard projector, computer.	
Reading list	1 Timan A F. The theory of approximation of functions of a real variable	
	Fizmatoiz M 1969 610 n	
	2 Korneichuk A Approximation of functions by polynomials M Nauka	
	2015 352n	
	2 Nikolsky S M. Approximation of functions of several variables and	
	ambadding theorems 2017, 475 p	
	A Deri N.K. Trigonometric series M. Firmetein 1061 060:	
	4. Bari N.K. Irigonometric series. M.: Fizmatgiz, 1961 - 960s.	
	5. Kashin B.S., Sahakyan A.A. Orthogonal serias. M.: Nauka, 2015 -315s	

	Module 42
Course code and name	MATH 63041
	Galois theory
Semester(s) when the course is taught	3
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
	2. Abutalipova Sh.U., senior Persons responsible for the module,
	Candidate of Physical and Mathematical Sciences
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	6 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic
Workload (incl. contact hours, self-study	Total workload: 180 hours.
hours)	Lectures: 30 hours, practical: 30 hours, independent work of students: 120
	hours.
Required and recommended	Group theory, Finite Abelian groups
prerequisites for joining the course	
Module objectives/intended learning	The goal is to acquaint students with Galois theory, teach them to apply
outcomes	theoretical knowledge to solving problems in research and teaching
	activities.
	As a result of the course, students will know the basic concepts associated
	with Galois theory, be able to perform calculations related to finite
	groups, finite fields, and their Galois groups, and master the skills of
	applying Galois theory.

Content of the course	The concept of a field, types of fields. Field extensions, types of field extensions. Automorphisms of finite fields. Solvable automorphism groups. Galois group. Solvable equations. Decomposition field of a polynomial. Galois group of the equation. A theorem on the connection between the solvability of an equation in radicals and the solvability of the Galois group of this equation. Construction of an equation of the 5th degree, unsolvable in radicals.
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for lectures and practical exercises based on the materials of previous classes, teaching aids and relevant Reading list; timely fulfill and hand over the tasks of the IWS; participate in all types of control (current control, IWS control, boundary control, final control).
Technical and electronic learning tools	projector, laptop, screen, discipline syllabus, EMCD, textbooks and materials on topics.
Reading list	 Artin E. Galois theory / - M .: MTsNMO (Moscow Center for Continuous Mathematical Education), 2016 68 p. Postnikov M.M. Galois theory / - M: Factorial Press, 2003 304 p. Ermolaev Yu.B. Introduction to Galois Theory: Textbook Kazan: Publishing house of KSU, 2001 37 p.

Module 43		
Module code and name	MATH 63043 Limiting error of unexact information under optimal	
	recovery (the case of recovery of functions)	
Semester(s) in which the discipline is	3	
taught		
Persons responsible for the module(s)	N. Temirgaliyev, N. Nauryzbaev, G. Taugynbaeva, A. Zh. Zhubanysheva	
Language	Kazakh/Russian	
Connection with the curriculum (cycle,	Profile (Optional component)	
component)		
Credit scores (by discipline)	6 ECTS	
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with	
	scientific Reading list, offline and online consultations	
Workload (incl. contact hours, self-	Total workload: 180	
employment hours) contact hours	Lectures Practical training Self-study hours	
	30 30 120	
Required and recommended	Mathematical analysis, Theory of functions of a real variable (Real	
prerequisites for attaching to the module	analysis), Functional analysis	
The purpose of the discipline / expected	Acquaintance with the formulation of the problem of the Computational	
learning outcomes	(Numerical) diameter by exact and unexact information in the case of	
	recovery of functions and the results on them in the context of	
	International Mathematics	
The content of the discipline	Statement of the problem of the Computational (Numerical) diameter by	
	exact and unexact information, informative power of all possible linear	
	functional in the problem of recovery of functions from classes, limiting	
	error of unexact information when optimally recovery functions from	
	trigonometric Fourier coefficients, limiting error of unexact information	
	when optimally recovery functions by their values at points.	
Exam Forms	Oral exam	
Tuition and Exam Requirements	Attendance at all classroom sessions, fulfillment of independent work of	
^ 	a student assignments of all types of controls (current intermediate and	
	a student, assignments of an types of controls (current, intermediate and	

Technical and electronic learning aids	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic
	textbooks
Reading list	 Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik. Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah vosstanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i priblizhenij. Rjady Fur'e [Computational (Numerical) diameter. Algebraic number theory and harmonic analysis in recovery problems (Quasi-Monte Carlo method). The theory of embeddings and approximations. Fourier series.], Vest. ENU im. L. N. Gumileva. Spec. vypusk, posvjashhennyj nauchnym dostizhenijam matematikov ENU im. L. N. Gumilyova [Bulletin of L. N. Gumilyov Eurasian National University. Special issue devoted to the scientific achievements of mathematicians L. N. Gumilev ENU], 1-194 (2010). Temirgaliyev N. Nepreryvnaja i diskretnaja matematika v organicheskom edinstve v kontekste napravlenij issledovanij
	[Continuous and discrete mathematics in organic unity in the context of research directions], Jelektronnoe izdanie. ITMiNV. (postojanno dopolnjaemyj po novym rezul'tatam i sootvetstvenno po novym i utochnjaemym postanovkam zadach – iz-za laviny rezul'tatov poslednih let vse vremja otodvigaemyj) [Electronic edition. IThMandSC. (constantly supplemented by new results and accordingly on new and more refined statements of problems - because of the avalanche of the results of recent years)], Astana, 2018.
	 Temirgaliyev N. Matematika: Izbrannoe. Nauka // pod red. B. S. Kashina [Mathematics: Selected. Science//under the editorship of B. S. Kashin]. Astana: L.N.Gumilyov ENU publishing house, 2009, 613 p. Temirgaliyev N., Zhubanysheva A.Zh. Approximation Theory, Computational Mathematics and Numerical Analysis in new conception of Computational (Numerical) Diameter// Bulletin of L.N. Gumilyov Eurasian National University. Mathematics. Computer
	science. Mechanics series, 2018. Vol. 124. №3, P. 8-88. 5. Temirgaliev N., Sherniyazov K. E., Berikhanova M. E. Exact Orders of Computational Cross-Sections in Problems of Reconstructing Functions and Sampling Solutions of the Klein-Gordon Equation from Fourier Coefficients // Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 282, suppl. 1, 165-191. 6. Temirgaliev N. Abikenova Sh. K. Zhubanysheva A. Zh
	Taugynbaeva G. E., Discretization of Solutions to a Wave Equation, Numerical Differentiation, and Function Recovery with the Help of Computer (Computing) Diameter //Kazakh/Russian Mathematics (Iz. VUZ), 2013, Vol. 57, No. 8, pp. 75-80.

Course code and name	MATH 63044 Maximum Regularity Approach to Equations of Quantum			
	Mechanics			
Semester(s) when the course is taught	3			
Persons responsible for the module	1. K.N. Ospanov	1. K.N. Ospanov		
	2. R.D. Akhmetkaliyeva	l		
Language	Kazakh/Russian			
Connection with the curriculum (cycle,	Profile (Optional component)			
component)				
Credit points (total by discipline)	6 ECTS			
Teaching methods	explanatory-illustrative,	information-reporting, j	partial-search,	
	reproductive			
Workload (incl. contact hours, self-study	Total workload: 180			
hours)	Lectures	Practical training	Self-study hours	
	30	30	120	

Required and recommended	Ordinary differential equations
prerequisites for joining the course	
Module objectives/intended learning	- know the possess the basics of the classification of bounded linear
outcomes	operators by the structure of the spectrum, the properties of Hilbert-
	Schmidt operators, nuclear operators,
	- to own the research methods the maximum regularity of differential
	equations for their application in research work and analyze the
	eigenvalues of elliptic differential operators.
	- be able to apply the simplest embedding theorems to determine the
	type of the resolvent of the Sturm-Liouville operator, apply the
	properties of the resolvent in questions of evaluating the quality of
	approximate schemes for solving differential equations,
Content of the course	Bounded normal operators in a Hilbert space. Hilbert-Schmidt operators.
	Carleman's theorem. Classes Cp of completely continuous operators.
	Unbounded operators in Hilbert space. Spectral theorem for unbounded
	self-adjoint operators. Completeness theorems for the system of root
	vectors of unbounded operators.
Examination forms	One final oral exam.
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam,
	you must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Otelbaev, M. Estimates of the eigenvalues of singular differential
	operators // Collection of selected scientific papers published in 1972-
	2011 - 2012 P.53-61.
	2. Ospanov K.N. Singular differential equations: textbook / Almaty:
	CyberSmith, 2017 69 p ISBN 978-601-310-955-8 (in Kazakh)
	3. Muratbekov M.M. Separability and spectral properties of singular
	differential operators of mixed type: // Almaty: Evero, 2019 141 p
	ISBN 9/8-601-7528-92-8 (in Russian)
	4. Demidovich B.P. Mathematical Foundations of Quantum Mechanics:
	textbook / Ed. 2nd, rev St. Petersburg: Lan, 2005 196 p.: - ISBN 5-
	X = X = 14 - 0674 - X (in Russian)

Module 45			
Course code and name	MATH 63045 Fourier	multipliers in Lorentz s	paces
Semester(s) when the course is taught	3		
Persons responsible for the module	Y.D. Nursultanov		
	A.A. Jumabayeva		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	onent)	
component)			
Credit points (total by discipline)	6 ECTS		
Teaching methods	Case study, brainstormi	ng, works in group, cor	nmunicative method,
	cinquain method, intera	ctive method, different	iated approach, project
	method, lecture-confere	nce.	
Workload (incl. contact hours, self-study	Total workload: 180		
hours)	Lectures	Practical training	Self-study hours
	30	30	120
Required and recommended	Mathematical Analysis	II.	
prerequisites for joining the course			

Module objectives/intended learning	To master methods of regular ranks, their properties, to be capable to
outcomes	apply methods of regular ranks in the theory of animators, theories of
	multipliers, in the theory of functional spaces, to have skills of work
	with Fourier's specific animators
Content of the course	Lebesgue Spaces, Lorentz. Trigonometric Fourier series, properties,
	sufficient convergence conditions. Regular system. Multipliers. The
	Theorem Of Marcinkiewicz, Germander, Lizorkina.
Examination forms	Oral exam
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam,
	you must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. A. Jumabayeva, E. Smailov, N. Tleukhanova On spectral properties
	of the modified convolution operator // Journal of Inequalities and
	Applications 2012, 2012:146
	2.Nursultanov E. D., "On the coefficients of multiple Fourier series
	from Lp-spaces", Izv. Ross. Akad. Nauk Ser. Mat., 64:1 (2000), 95–122
	3. Trenogin V.A. Functional Analysis, 3rd edition, M .: FIZMATLIT,
	2002 (in Russian).
	4.Nursultanov E. D., Tleukhanova N. T., "Lower and upper bounds for
	the norm of multipliers of multiple trigonometric Fourier series in
	Lebesgue spaces", Funktsional. i Prilozhen., 34:2 (2000), 86-88
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=91
	<u>76</u>

	Module 4	46	
Course code and name	MATH 63046 Interpol	ation of weighted Sobole	ev spaces
Semester(s) when the course is taught	3		
Persons responsible for the module	L.K. Kusainova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional comp	onent)	
component)			
Credit points (total by discipline)	6 ECTS		
Teaching methods	Lectures, practical class	ses	
Workload (incl. contact hours, self-study	Total workload: 180		
hours)	Lectures	Practical training	Self-study hours
	30	30	120
Required and recommended	Mathematical Analysis	II.	
prerequisites for joining the course			
Module objectives/intended learning	Summary of the main	provisions of the course	"Theory of interpolation
outcomes	of Sobolev weight space	ces". / Knowledge of the	e basic provisions of the
	theory of interpolation	of Banach spaces. The	practice of ownership on
	the example of Sobolev	weight spaces with regu	ılar weights.
Content of the course	Interpolation pairs. Inte	rpolation functors.	
	Retraction. Correction	. The main theorem for	or interpolation functors.
	The method of real i	interpolation. K-function	nals. Spaces $(A_0, A_1)_{\theta, p}$
	(interpolation of space	es $(l_p(A_j))$. Sobolev wei	ght spaces with regular
	weights. Reduction of	the interpolation proble	m for Sobolev spaces to
	the interpolation theo	orem for spaces of ty	pe $l_{p}(A_{i})$. Interpolation
	theorems of Sobolev we	eight spaces.	
Examination forms	Oral examination (theor	retical and practical tasks	5)

Study and examination requirements	Timely completion of tasks on the subject under study, independent
	work
Technical and electronic learning tools	Textbooks, manuals, monographs on electronic media
Reading list	1. X.Tribel. Interpolation theory, functional spaces, differential
	operators, Mir Publishing House, 1980-El.
	2. J. Berg, J.Lefstrom. Interpolation spaces. Introduction, Ed.Mir, 1980
	3. L.K.Kusainova. On the interpolation of Sobolev weight spaces.
	Izvestiya MNAN Kaz.SSR.1997. No. 5

	Module 47		
Module code and name	MATH 63047 Additive and multiplicative weighted inequalities		
Semester(s) in which the module is taught	Semester 3		
Person responsible for the module	R. Oinarov		
	A.M. Temirkhanova		
	A.M. Abylaeva		
Language	Kazakh/Russian		
Relation to curriculum	Elective		
Teaching methods	explanatory-illustrative, information-reporting, partial-search, reproductive		
Workload (incl. contact hours, self-study	Total workload: 180		
hours)	Lectures Seminars SIW		
	30 30 120		
Credit points	6 ECTS		
Required and recommended	Mathematical analysis, Functional analysis, Weighted inequalities of		
prerequisites for joining the module	Hardy type		
Module objectives/intended learning	The main objective of the module is to acquaint with theoretical material		
outcomes	and teach undergraduates to apply modern research methods to the		
	problems of determining conditions for fulfilment of additive and		
	multiplicative inequalities in weighted spaces.		
	- to know methods of proving the fulfilment of discrete and integral		
	additive inequalities in weighted sequence and function spaces,		
	respectively;		
	- to know methods of proving the fulfilment of discrete and integral		
	multiplicative inequalities in weighted sequence and function spaces,		
	respectively;		
	-to be able to prove the additive and multiplicative inequalities in		
	weighted spaces, necessary and sufficient conditions for the weights of		
	the additive and multiplicative inequalities with different parameters.		
Content	The discipline "Additive and multiplicative weighted inequalities" is		
	aimed at studying additive and multiplicative estimates for the weighted		
	norm of a function through the weighted norm of a differentiation		
	operator or an integral operator. Discrete additive, multiplicative		
	inequalities in weighted sequence spaces. Integral additive,		
	discrete inequalities in weighted function spaces. Infee-weighted		
	for the additive estimate of the matrix encreter. The multiplicative		
	generalization of Hardy's inequality		
Exame and assessment formate	Two oral Midterm control in the form of a colloquium in 7^{th} and 15^{th}		
Lizanto and assessment formats	weeks. Colloquium ticket has 2 questions (25 minutes for each		
	question) One final oral exam (50 minutes)		
	guestion). One final oral exam (50 fillitutes).		

Study and examination requirements and forms of examination	Current control is estimated weekly, is estimated at 100 points, which includes the recording of lecture notes, work at the blackboard, homework and independent work. 60% of the admission rating. The final grade in the module consists of 40% of the progress in the exams. The admission rating is the arithmetic mean of midterm controls, including 50% of the current rating and 50% of intermediate controls. To be admitted to the exam, you must have an admission rating of 50 points or higher.
Reading list	 Oinarov R., Shalgynbaeva S.K. Weighted additive estimate of a class of matrix operators // Известия НАН РК, серия физмат. –2004. № 1. –P.39–49. Temirkhanova A.M., Taspaganbetova Z.A. Criteria on Boundedness of matrix operators in weighted spaces of sequences and their applications // Annals of functional analysis. –2011. –Vol. 2, № 1. –P. 114–127. Oinarov R., Kalybay A. Three-parameter weighted Hardy type inequalities // Banach joirnal of mathematical analysis. –2008. –Vol. 2. –P. 85-93.
	 4. Oinarov R. On one tree-weighted generalization of Hardy inequality Mathematicheskie zametki, 1993. (2). 54P.56-62. (in Russian)// 5. Oinarov R., Sagintaeva S.S. On one Hardy type tree-weighted inequality // Science and education of South Kazakhstan, Series: economics, math., 1997. (6)P.183-194. (in Russian) 6. Oinarov R. Reversion of Hölder type inequalities for sums of weighted norms and additive weighted estimates of integral operators // Journal of mathematical inequalities and applications2003Vol. 6. №3P. 421-436. 7. Oinarov R. A dual inequality for an additive estimate of a matrix operator // Trudy Int. conf. "The current state and prospects for the development of mathematics in the framework of the program" Kazakhstan in the third millennium, 2001C. 111-115.

Module 48			
Course code and name	MATH63048 Multipliers of trigonometric Fourier series in optimal		
	monitoring problems		
Semester(s) when the course is taught	3		
Persons responsible for the module	N.T. Tleukhanova		
	G.K. Mussabayeva		
Language	Kazakh/Russian		
Connection with the curriculum (cycle, component)	Profile (Optional component)		
Credit points (total by discipline)	6 ECTS		
Teaching methods	Case study, brainstorming, works in group, communicative method, cinquain method, interactive method, differentiated approach, project method, lecture-conference.		
Workload (incl. contact hours, self-study	Total workload: 180		
hours)	Lectures	Seminars	SIW
	30	30	120
Required and recommended	Mathematical Analysis II.		
prerequisites for joining the course			
Module objectives/intended learning	On the basis of new achievements in the theory of multipliers of Fourier		
outcomes	series and the Fourier transform, an operator is constructed for		
	recovering multiplicative transformations of functions of several		
	variables from the values of the function at fixed points. This knowledge		
	allows us to develop new approaches to solving the problems of optimal		
	monitoring.		

Content of the course	The theory of Multipliers is an intensively developing section of	
	functional analysis	
	The course focuses on the overall report, history of multipliers, and	
	recent results. In addition, they study the properties of the class of	
	multipliers in the trigonometric system and the properties of the class of	
	factors in the trigonometric system.	
Examination forms	One final oral exam.	
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the	
	recording of lecture notes, work at the blackboard, homework and	
	independent work. The final grade in the module consists of 40% of the	
	progress in the exams, 60% of the admission rating. Tolerance rating is	
	the arithmetic mean of midterm controls, including 50% of the current	
	rating and 50% of intermediate controls. To be admitted to the exam,	
	you must have an admission rating of 50 points or higher.	
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles	
Reading list	1. A. Jumabayeva, E. Smailov, N. Tleukhanova On spectral properties	
	of the modified convolution operator // Journal of Inequalities and	
	Applications 2012, 2012:146	
	2. Nursultanov E. D., "On the coefficients of multiple Fourier series	
	from Lp-spaces", Izv. Ross. Akad. Nauk Ser. Mat., 64:1 (2000), 95–122	
	3. Trenogin V.A. Functional Analysis, 3rd edition, M .: FIZMATLIT,	
	2002 (in Russian).	
	4.Nursultanov E. D., Tleukhanova N. T., "Lower and upper bounds for	
	the norm of multipliers of multiple trigonometric Fourier series in	
	Lebesgue spaces", Funktsional i Prilozhen., 34:2 (2000), 86–88	

Module 49		
Course code and name	MATH 63049 C* - Algebras	
Semester(s) when the course is taught	2	
Persons responsible for the module	1. T. Nurlybekuly	
Language	Kazakh/Russian	
Connection with the curriculum (cycle, component)	Profile (Optional component)	
Credit points (total by discipline)	6 ECTS	
Teaching methods	explanatory-illustrative, information-reporting, partial-search, reproductive	
Workload (incl. contact hours, self-	Total workload: 180	
study hours)	Lectures Seminars SIW	
	30 30 120	
Required and recommended	Complex Functions, Real Functions, Functional Analysis.	
prerequisites for joining the course		
Module objectives/intended learning	To own Gelfand fundamental theorem, the continuous function calculus	
outcomes	and its application. To develop theoretical basis and useful research tools	
	for noncommutative martingale theory and noncommutative harmonic analysis.	
Content of the course	Basic properties of C* algebra. Spectral set and resolvent set. Positive	
	elements, approximate identity, homomorphisms and ideals of C *	
	algebra. Basic properties of positive linear functionals and representation	
	of C* algebras.	
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium	
	and control work. One final oral exam (60 minutes).	

I

Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the recording of lecture notes, work at the blackboard, homework and independent work. The final grade in the module consists of 40% of the progress in the exams, 60% of the admission rating. Tolerance rating is the arithmetic mean of midterm controls, including 50% of the current rating and 50% of intermediate controls. To be admitted to the exam, you must have an admission rating of 50 points or higher.	
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.	
Reading list	1. Xu Q., Bekjan T. N., Chen Z., Introduction to C* algebra and noncommutative Lp- space theory, 2010.	
	 Sakai S., C*-algebras and W*-algebras, SpringerVerlag, Berlin, 1971. 	
	3. Takesaki M., Theory of Operator Algebras I, Springer Verlag, New York, 1979.	

Module 50		
Course code and name	MATH 63050 Group-based cryptography	
Semester(s) when the course is taught	3	
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;	
	2. Abutalipova Sh.U., senior Persons responsible for the module,	
	Candidate of Physical and Mathematical Sciences	
Language	Kazakh/Russian	
Connection with the curriculum (cycle,	Profile (Optional component)	
component)		
Credit points (total by discipline)	6 ECTS	
Teaching methods	explanatory-illustrative, reproductive, problematic	
Workload (incl. contact hours, self-	Total workload: 180 hours.	
study hours)	Lectures: 30 hours, practical: 30 hours, independent work of students: 120	
	hours.	
Required and recommended	Spaces and rings	
prerequisites for joining the course		
Module objectives/intended learning	To acquaint with the basic concepts, results and methods of the theory of	
outcomes	locally nilpotent derivations, to teach students to apply theoretical	
	knowledge in solving problems, to form their skills in research and	
	teaching activities.	
	As a result of the course, students will know the basic concepts, results,	
	methods and ideas of the theory of locally nilpotent derivations, be able to	
	prove basic statements and apply the theoretical knowledge gained in	
	solving problems, have the skills to apply the methods and ideas of the	
	discipline in research activities in the field of algebra and affine-algebraic	
	geometry, as well as apply the studied material in teaching activities in	
	educational organizations when reading relevant courses.	
Content of the course	Derivation. Locally nilpotent derivations of free algebras. Algorithms for	
	locally nilpotent derivations of free algebras. Free Metabelian Lie	
	Algebra. Locally nilpotent derivation and exterior automorphisms of a	
	free metabelian Lie algebra. Locally nilpotent derivations of the algebra	
	of polynomials. Derivation and the Jacobi condition.	
Examination forms	Oral exam	
Study and examination requirements	based on the meterials of provide classes, teaching aids and relevant	
	Dased on the materials of previous classes, teaching and and relevant	
	in all types of control (current control IWS control boundary control	
	final control)	
Technical and electronic learning tools	noiector lapton screen discipline sullabus FMCD textbooks and	
	materials on tonics	

Reading list	1. Arno van den Essen, Polynomial automorphisms and the Jacobson
	conjecture / Basel, Boston, Berlin: Birkhauser, 2000.
	2. E. B. Vinberg, Algebra Course / Moscow, 2015.
	3. Berson J., Polinomial coordinates of their behavior in higher
	dimensions / Manuscript 2004.
	4. Bardakov V.G. Lectures on Algebra Yu.I. Mezlyakova: Proc.
	allowance / Novosib. state un-t. Novosibirsk, 2012.
	5. O. V. Melnikov, V. N. Remeslinikov, and V. A. Roman'kov, General
	Algebra. T. 1. Under the general. ed. L.A. Skornyakova / M.: Nauka,
	1990.

Module 51			
Module code and name	MATH63051 Optimal approximation of a thermal process with infinitely smooth initial conditions		
Semester(s) in which the discipline is taught	3		
Persons responsible for the module(s)	N. Temirgaliyev, N. Nauryzbaev, G. Taugynbaeva, A. Zh. Zhubanysheva		
Language	Kazakh/Russian		
Connection with the curriculum (cycle, component)	Profile (Optional component)		
Credit scores (by discipline)	6 ECTS		
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with scientific Reading list, offline and online consultations		
Workload (incl. contact hours, self-	Total workload: 180		
employment hours) contact hours	LecturesSeminarsSIW3030120		
Required and recommended prerequisites for attaching to the module	Mathematical analysis, Theory of functions of a real variable (Real analysis), Functional analysis		
The purpose of the discipline / expected learning outcomes	Acquaintance with the formulation of the problem of the Computational (Numerical) diameter by exact and unexact information in the case of recovery of functions and the results on them in the context of International Mathematics		
The content of the discipline	Statement of the problem of the Computational (Numerical) diameter by exact and unexact information, informative power of all possible linear functional in the problem of recovery of functions from classes, limiting error of unexact information when optimally recovery functions from trigonometric Fourier coefficients, limiting error of unexact information when optimally recovery functions by their values at points.		
Exam Forms	Oral exam		
Tuition and Exam Requirements	Attendance at all classroom sessions, fulfillment of independent work of a student, assignments of all types of controls (current, intermediate and final)		
Technical and electronic learning aids	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic textbooks		

Reading list	1. Temirgaliyev N. Komp'iuternyi (vychislitel'nyi) poperechnik.
	Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah
	vosstanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i
	priblizhenii. Riady Fur'e [Computational (Numerical) diameter. Algebraic
	number theory and harmonic analysis in recovery problems (Quasi-Monte
	Carlo method). The theory of embeddings and approximations. Fourier
	series.], Vest. ENU im. L. N. Gumileva. Spec. vypusk, posvjashhennyj
	nauchnym dostizhenijam matematikov ENU im. L. N. Gumilyova
	Bulletin of L. N. Gumilvov Eurasian National University. Special issue
	devoted to the scientific achievements of mathematicians L. N. Gumilev
	ENU], 1-194 (2010).
	2. Temirgaliyev N. Nepreryvnaja i diskretnaja matematika v
	organicheskom edinstve v kontekste napravlenij issledovanij [Continuous
	and discrete mathematics in organic unity in the context of research
	directions], Jelektronnoe izdanie. ITMiNV. (postojanno dopolnjaemyj po
	novym rezul'tatam i sootvetstvenno po novym i utochnjaemym
	postanovkam zadach – iz-za laviny rezul'tatov poslednih let vse vremja
	otodvigaemyj) [Electronic edition. IThMandSC. (constantly supplemented
	by new results and accordingly on new and more refined statements of
	problems - because of the avalanche of the results of recent years)],
	Astana, 2018.
	3. Temirgaliyev N. Matematika: Izbrannoe. Nauka // pod red. B. S.
	Kashina [Mathematics: Selected. Science//under the editorship of B. S.
	Kashin]. Astana: L.N.Gumilyov ENU publishing house, 2009, 613 p.
	4. Temirgaliyev N., Zhubanysheva A.Zh. Approximation Theory,
	Computational Mathematics and Numerical Analysis in new
	conception of Computational (Numerical) Diameter// Bulletin of
	L.N. Gumilyov Eurasian National University. Mathematics. Computer
	science. Mechanics series, 2018. Vol. 124. №3, P. 8-88.
	5. Temirgaliev N., Sherniyazov K. E., Berikhanova M. E. Exact Orders of
	Computational Cross-Sections in Problems of Reconstructing Functions
	and Sampling Solutions of the Klein-Gordon Equation from Fourier
	Coefficients // Proceedings of the Steklov Institute of Mathematics
	(Supplementary issues), 2013, 282, suppl. 1, 165-191.
	6. Temirgaliev N., Abikenova Sh. K., Zhubanysheva A. Zh., Taugynbaeva
	G. E., Discretization of Solutions to a Wave Equation, Numerical
	Differentiation, and Function Recovery with the Help of Computer
	(Computing) Diameter //Kazakh/Russian Mathematics (Iz. VUZ), 2013,
	Vol. 57, No. 8, pp. 75-80.

Course code and name	MATH63052 The linea	r equations in the Bana	ch space
Semester(s) when the course is taught	3		
Persons responsible for the module	K.N. Ospanov		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	onent)	
component)			
Credit points (total by discipline)	6 ECTS		
Teaching methods	explanatory-illustrative,	information-reporting,	partial-search,
	reproductive		
Workload (incl. contact hours, self-	Total workload: 180		
study hours)	Lectures	Practical training	Self-study hours
	30	30	120
Required and recommended	Functional analysis		
prerequisites for joining the course			

Module objectives/intended learning	- know the methods of the theory of closed linear operators in a Hilbert
outcomes	space, functional equations of the second kind, elements of the theory of
	generalized functions,
	- to own the methods of studying linear equations in a Banach space for
	their application in research work and the application of theorems of
	functional analysis to search for generalized solutions.
	- be able to introduce a generalized solution of the posed boundary value
	problem in the class of discontinuous functions,
Content of the course	Adjoint equation in a Banach space. Fredholm equations. Redefined
	Equations. Indefinite Equations. Integral equations. Differential
	Equations.
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Otelbaev, M. On the formulas for the distribution of eigenvalues of
	singular differential operators // Collection of selected scientific papers
	published in 1972-2011 - Astana: L.N. L.N. Gumilyov, 2012 S.24-30.
	2. S.A. Abdymanapov, G.A.Esenbayeva, M.T.Kosmanova Equations of
	Mathematical Physics AlmatyRauan, 2001161 p. (in Russian)
	3. Vlasova E.A. Elements of functional analysis: textbook / St.
	Petersburg. Lan, 2015 397 p. ISBN 978-5-8114-1958-6 (in Russian)
	4. Shubin. Lectures on the equations of mathematical physics. 2nd ed.
	2003 (in Russian)
	5. Filimonenkova N.V. Collection of tasks on functional analysis:
	educational St. Petersburg. Lan, 2015 228 p ISBN 978-5-8114-
	1822-0 (in Russian)

Module 53			
Course code and name	MATH63053 Su	mmability of Fourier coeffic	ients functions from
	weight spaces		
Semester(s) when the course is taught	3		
Persons responsible for the module	Y.D. Nursultanov,		
	A. A. Zhumabayev	va	
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional c	component)	
component)		-	
Credit points (total by discipline)	6 ECTS		
Teaching methods	Case study, brains	torming, works in group, con	nmunicative method,
	cinquain method, i	interactive method, differenti	ated approach, project
	method, lecture-co	onference.	
Workload (incl. contact hours, self-	Total workload: 18	80	
study hours)	Lectures	Practical training	Self-study hours
	30	30	120
Required and recommended	Mathematical Ana	lysis II.	
prerequisites for joining the course			
Module objectives/intended learning	To own definitions	s, characteristics, fundamenta	lls of functionals-spaces,
outcomes	weighted spaces.		
	To own definitions, properties, methods of Fourier series, Fourier		
	transform		

Content of the course	Multiple rows. Methods of summability. Multiple Trigonometric Fourier
	series, properties, sufficient convergence conditions. Multipliers,
	multipliers for trigonometric systems. Fourier transformation. Properties.
	The weight Lebesgue spaces. The weight space of type Baseva, Sobolev,
	Nikol'skii.
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Triebel Interpolation theory, function spaces, differential operators
	Huthig Pub Limited 1995.
	3 Nursultanov ED, "Interpolation theorems for anisotropic spaces and
	their applications", Kazakh/Russian Academy of Sciences reports, 394: 1
	(2004), 22-25 (in Russian).
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=858
	5

	Module 54	
Course code and name	MATH63054 The general theory of interpolation Sobolev spaces	
Semester(s) when the course is taught	3	
Persons responsible for the module	L.K.Kusainova	
Language	Kazakh/Russian	
Connection with the curriculum (cycle, component)	Profile (Optional component)	
Credit points (total by discipline)	6 ECTS	
Teaching methods	Lectures, practical classes	
Workload (incl. contact hours, self-study	Total workload: 180	
hours)	Lectures Seminars SIW	
	30 30 120	
Required and recommended	The general theory of interpolation Sobolev spaces	
prerequisites for joining the course		
Module objectives/intended learning	Mastering the mathematical apparatus of elements of the theory of	
outcomes	interpolation of Sobolev spaces and its application in functional analysis	
	problems.	
	/Fluency in the following theoretical material.	
	- The main provisions of the theory of real interpolation of Banach spaces.	
	- The theory of real interpolation of Sobolev spaces.	
Content of the course	Interpolation pairs. Interpolation functors.	
	Retraction. Correction. The main theorem for interpolation functors. The	
	method of real interpolation. K-functionals. Spaces $(A_0, A_1)_{\theta,p}$	
	(interpolation of spaces $(l_p(A_j))$. Sobolev weight spaces with regular	
	weights. Reduction of the interpolation problem for Sobolev spaces to the	
	interpolation theorem for spaces of type $l_p(A_j)$. Interpolation theorems of	
	Sobolev weight spaces.	
Examination forms	Oral examination (theoretical and practical tasks)	
Study and examination requirements	Timely completion of tasks on the subject under study, independent work	
Technical and electronic learning tools	Textbooks, manuals, monographs on electronic media	

Reading list	1. X.Tribel. Interpolation Theory, functional spaces, Differential
	operators, Mir Publishing House, 1980-
	https://www.twirpx.com/file/477252/
	2. M.Reed, B.Simon. Functional analysis. 1. Ed.Mir, 1977-
	https://www.twirpx.com/file/235076/3. M.Reed, B.Simon.
	3. Harmonic analysis. 2.Ed.Mir, 1978
	http://old.pskgu.ru/ebooks/ridm2.html
	4. S. G. Mikhlin. Linear partial differential equations. M. Higher School,
	1977 http://padabum.com/d.php?id=2954
	5. J. Berg, J. Lefstrom. Interpolation spaces. Introduction, Ed.Mir,
	1980https://search.rsl.ru/ru/record/0100

	Module 55	
Module code and name	MATH63055 Weighted estimates of matrix operators	
Semester(s) in which the module is taught	Semester 3	
Person responsible for the module	R. Oinarov	
	A.M. Temirkhanova	
	A.M. Abylaeva	
Language	Kazakh/Russian/English	
Relation to curriculum	elective	
Teaching methods	explanatory-illustrative, information-reporting, partial-search, reproductive	
Workload (incl. contact hours, self-study	Total workload: 150	
hours)	Lectures Seminars SIW	
	30 15 105	
Credit points	5 ECTS	
Required and recommended	Functional analysis, Weighted inequalities of Hardy type	
prerequisites for joining the module		
Module objectives/intended learning	The main objective of this course is to introduce the concept of matrix	
outcomes	operators defined in sequence spaces and learn to study their properties.	
	determining the conditions of matrix operators in weighted spaces	
	to know methods of proving the fulfilment of weighted inequalities for	
	matrix operators.	
	-to be able to prove the classical inequalities of analysis necessary and	
	sufficient conditions of boundedness of matrix operators in Lebesgue	
	sequence spaces when $0 < p, q < \infty$.	
	- to develop skills and abilities in solving problems of assessing the norms	
	of matrix operators and acquire research skills.	
Content	Two-weighted discrete inequalities for one class of matrix operators when	
	$l < p, q < \infty$ and $a_{ij} \approx a_{ik} + a_{kj}, i \ge k \ge j \ge 1$. Two-weighted discrete	
	inequalities for one class of matrix operators when $l < p, q < \infty$ and	
	$a_{ij} \approx \frac{a_{ik}}{c_k} c_j + \frac{a_{kj}}{b_j} b_i, i \ge k \ge j \ge 1.$ Criterion of boundedness and	
	compactness for a class of matrix operators in Lebesgue sequence spaces	
	when $l < p, q < \infty$ and $a_{ij} \approx b_{ik}\omega_i + a_{kj}$, $i \ge k \ge j \ge 1$. Criterion of	
	boundedness and compactness for a class of matrix operators in Lebesgue sequence spaces when $l < n < \infty$ and $a_{ij} \approx a_{ijk} + h_{ijk}(a_{ijk}, i > k > k)$	
	i > 1 Criterion of boundedness of the operator of multiple summation in	
	Lebesgue sequence spaces when $l < p, q < \infty$.	
Exams and assessment formats	Two oral Midterm control in the form of a colloquium in 7 th and 15 th	
	weeks. Colloquium ticket has 2 questions (25 minutes for each question).	
	One final oral exam (50 minutes).	

Study and examination requirements and	Current control is estimated weekly, is estimated at 100 points, which
forms of examination	includes the recording of lecture notes, work at the blackboard, homework
	and independent work. 60% of the admission rating. The final grade in the
	module consists of 40% of the progress in the exams. The admission
	rating is the arithmetic mean of midterm controls, including 50% of the
	current rating and 50% of intermediate controls. To be admitted to the
	exam, you must have an admission rating of 50 points or higher.
Reading list	1. Kufner A., Persson LE. Weighted inequalities of Hardy type. World
	2 Oingrov P. Persson I. F. Temirkhanova A. Weighted inequalities for
	2. Onatov K., refision LL., remarkinghova A. weighted inequalities for $n \le a$
	a class of matrix operators: the case $P \cong q //$ Mathematical Inequalities
	and Applications. – Croatia, 2009. – V. 12 № 4. – P. 891-903.
	3. Oinarov R., Okpoti C.A., Persson L.E. Weighted inequalities of Hardy
	type for matrix operators: the case $q < p$ // Mathematical inequalities and
	applications. –2007. –Vol. 10. –P. 843–861.
	4. Oinarov R., Shalgynbaeva S.K. Weighted additive estimate of a class of
	matrix operators // Известия НАН РК, серия физмат. –2004. № 1. – P.39–49.
	5. Temirkhanova A.M., Taspaganbetova Z.A. Boundedness and
	compactness criteria of a certain class of matrix operators //
	Математический журнал. –2011. № 11. –Р. 125–139.
	6. Temirkhanova A.M., Taspaganbetova Z.A. Criteria on Boundedness of
	matrix operators in weighted spaces of sequences and their applications //
	Annals of functional analysis. –2011. –Vol. 2, № 1. –P. 114–127.
	7. Kalybay A.A., Oinarov R., Temirkhanova A.M. Boundedness of n -
	multiple discrete Hardy operators with weights for $1 < q < p < \infty$ // Journal of
	function spaces and applications. – 2013. – P. 1-9.
	8. Oinarov R., Temirkhanova A.M. Boundedness and compactness of a
	class of matrix operators in weighted sequence spaces // Journal of
	mathematical inequalities. – 2008. – Vol. 2, № 4. – P. 555-570.

	wiouule	50	
Course code and name	MATH63056 Transform	mations of type Hardy ar	nd Bellman
Semester(s) when the course is taught	3		
Persons responsible for the module	N.T. Tleukhanova		
	A.N.Kopezhanova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	onent)	
component)			
Credit points (total by discipline)	5 ECTS		
Teaching methods	Case study, brainstormin	ng, works in group, com	municative method,
	cinquain method, interactive method, differentiated approach, project		
	method, lecture-confere	nce.	
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	Mathematical Analysis	II.	
prerequisites for joining the course			
Module objectives/intended learning	To master mathematical apparatus of the theory of Hardy and Bellman		
outcomes	transformations, methods, to be capable to apply them in appendices.		
Content of the course	Hardy and Bellman type transformation theory, methods and applications		
	of this theory.		
Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium		
	and control work. One final oral exam (60 minutes).		

Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the recording of lecture notes, work at the blackboard, homework and independent work. The final grade in the module consists of 40% of the progress in the exams, 60% of the admission rating. Tolerance rating is	
	the arithmetic mean of midterm controls, including 50% of the current	
	rating and 50% of intermediate controls. To be admitted to the exam, you	
	must have an admission rating of 50 points or higher.	
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles	
Reading list	1. A. Jumabayeva, E. Smailov, N. Tleukhanova On spectral properties of	
	the modified convolution operator // Journal of Inequalities and	
	Applications 2012, 2012:146	
	2. Nursultanov E. D., "On the coefficients of multiple Fourier series	
	from Lp-spaces", Izv. Ross. Akad. Nauk Ser. Mat., 64:1 (2000), 95–122	
	3. Trenogin V.A. Functional Analysis, 3rd edition, M .: FIZMATLIT,	
	2002 (in Russian).	
	4.Nursultanov E. D., Tleukhanova N. T., "Lower and upper bounds for	
	the norm of multipliers of multiple trigonometric Fourier series in	
	Lebesgue spaces", Funktsional i Prilozhen., 34:2 (2000), 86–88	

Course code and name	MATH63057 Wavelet analysis
Semester(s) when the course is taught	3
Persons responsible for the module	Bokayev N.A.
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	5 ECTS
Teaching methods	Classical teaching method: lecturing and solving problems in the
	classroom.
Workload (incl. contact hours, self-study	Total workload: 150 hours.
hours)	Lectures: 15 hours, practical: 30 hours, independent work of students: 105
	hours.
Required and recommended	Functional Analysis, Harmonic Analysis
prerequisites for joining the course	
Module objectives/intended learning	Mastering by students the necessary mathematical apparatus that helps to
outcomes	analyze, model and solve applied problems using wavelet analysis. /
	Mastering the apparatus of wavelet analysis by students and the ability to
	apply the acquired knowledge to solve problems of mathematical
	modeling.
Content of the course	The course covers the following sections of wavelet analysis:
	- Continuous wavelet transform and windowed Fourier transform; scaling
	functions, Haar wavelets, wavelet functions; restoration of the function
	through the wavelet transform; multiscale analysis, Meyer wavelets,
	spline wavelets and Daubechies wavelets.
	Applications of wavelet transform in signal processing, in computational
	tomography problems.
Examination forms	Verbal
Study and examination requirements	Mandatory attendance by students of all classes according to the schedule;
	Preliminary preparation for classes; Timely completion and submission of
	SRUs; Preparation for all types of classes should be independent, creative;
	Active work and manifestation of creativity during classes; Participation
	In all types of control; Commitment to the University's Academic
Technical and electronic learning (c. 1)	Integrity POIICy.
rechnical and electronic learning tools	Interactive whiteboard, interactive whiteboard projector, computer.

Reading list	1. Dobeshi I. Ten lectures on wavelets. Moscow-Izhevsk: Research Center
-	"Regular and Chaotic Dynamics", 2007264p.
	2. Malla S. Wavelet in signal processing. M.: Mir, 2007671s.
	3. Zakharova T.V., Shestakov O.V. Wavelet analysis and its applications.
	Moscow, Infra_M, 2018210p.
	4. Blatter K. Wavelet analysis. Fundamentals of the theory. M.:
	Technosphere, 2007280

Course code and name	MATH 63058 Polynomial automorphisms
Semester(s) when the course is taught	3
Persons responsible for the module	1. Naurazbekova A.S., acting associate professor, PhD;
	2. Abutalipova Sh.U., senior Persons responsible for the module,
	Candidate of Physical and Mathematical Sciences
Language	Kazakh/Russian
Connection with the curriculum (cycle,	Profile (Optional component)
component)	
Credit points (total by discipline)	5 ECTS
Teaching methods	explanatory-illustrative, reproductive, problematic
Workload (incl. contact hours, self-	Total workload: 150 hours.
study hours)	Lectures: 30 hours, practical: 15 hours, independent work of students: 105
	hours.
Required and recommended	Spaces and rings
prerequisites for joining the course	
Module objectives/intended learning	To acquaint students with the most important results concerning the
outcomes	theory of automorphism groups of polynomial rings and the Jacobian
	conjecture.
	As a result of the course, students will know the basic facts of the theory
	of automorphisms of polynomial rings, be able to prove the main results
~	and solve problems in the discipline.
Content of the course	Polynomial automorphism of an affine space. Tame automorphisms of an
	affine space in two variables. Combined work. Linearization of a finite
	subgroup. Birational extension of a polynomial automorphism.
	Derivations and automorphisms of the ring of polynomials. Locally
	nilpotent differentiation. Differentiation and the Jacobian conjecture.
	Tame automorphisms of the ring of polynomials in two and three
	variables. Advankar-Mon theorem, stabilization method. Application of
Exemination forms	Oral avera
Examination forms	Oral exam
Study and examination requirements	Students should: prepare in advance for fectures and practical exercises
	Dased on the materials of previous classes, teaching and and relevant
	in all types of control (current control IWS control houndary control
	final control)
Technical and electronic learning tools	projector lanton screen discipline syllabus EMCD textbooks and
reclinical and electronic learning tools	materials on tonics
Reading list	1 Arno van den Essen Polynomial automorphisms and the Jacobson
Reading list	conjecture / Basel Boston Berlin: Birkhauser 2000
	2 F B Vinberg Algebra Course / Moscow 2015
	3. Berson J., Polinomial coordinates of their behavior in higher
	dimensions / Manuscript 2004

Module 59		
Code and name of the module	MATH 53059 Limiting errors unexact information for the discretization of PDE solutions	
Semester(s) in which the discipline is taught	3	
Persons responsible for the module(s)	N.Temirgaliyev, E. Nurmoldin, N. Nauryzbayev, G.Taugynbayeva, A.Zh.Zhubanysheva	
Language	Kazakh/Russian	
Connection with the curriculum	Profile (Optional component)	
(cycle, component)	5 ECT9	
Credit scores (by discipline)	5 EC15	
Teaching methods	explanatory and illustrative, reproductive, detailed evidence, work with scientific Reading list, offline and online consultations	
Workload (incl. contact hours, hours	Total workload: 150 hours.	
of independent work) contact hours	Lectures: 15 hours, practical: 30 hours, independent work of students: 105 hours.	
Necessary and recommended	Mathematical analysis, Theory of functions of a real variable (Real	
prerequisites for joining the module	analysis), Functional analysis, Equations of mathematical physics	
The purpose of the discipline/	Introduction with the formulation of the Computational (Numerical)	
expected learning outcomes	diameter problem by exact information and unexact information in the case of discretization of solutions of partial differential equations and results on them in the context of International Mathematica	
Contant of the discipline	Introduction of Computational (Numerical) diameter problem by exact	
Content of the discipline	information and unexact information in the case of discretization of	
	solutions to partial differential equations discretization of solutions to the	
	heat equation, discretization of solutions to the wave equation.	
	discretization of solutions to the Poisson equation, discretization of	
	solutions to the Klein-Gordon equation, discretization of solutions to the	
	Laplace equation	
Exam Forms	Oral examination	
Requirements for training and exams	Attendance at all classroom sessions, fulfillment of independent work of a	
	student, assignments of all types of controls (current, intermediate and final)	
Technical and electronic learning	Projector, presentations, Microsoft Teams platforms, ZOOM, electronic	
tools	textbooks	
Reading list	1. Temirgaliyev N. Komp'juternyj (vychislitel'nyj) poperechnik. Algebraicheskaja teorija chisel i garmonicheskij analiz v zadachah vosstanovlenija (metod Kvazi-Monte Karlo). Teorija vlozhenij i priblizhenij. Rjady Fur'e [Computational (Numerical) diameter. Algebraic number theory and harmonic analysis in recovery problems (Ouasi-Monte	
	Carlo method). The theory of embeddings and approximations. Fourier	
	series. J, Vest. ENU im. L. N. Gumileva. Spec. vypusk, posvjashhennyj	
	naucnnym dostiznenijam matematikov ENU im. L. N. Gumilyova	
	devoted to the scientific achievements of mathematicians I. N. Gumilev	
	ENU], 1-194 (2010).	
	2. renniganyev iv. ivepreryvnaja i uiskretnaja matematika v	
	and discrete mathematics in organic unity in the context of research	
	directions] Ielektronnoe izdanie ITMiNV (postojanno dopolnjaemvi po	
	novym rezul'tatam i sootvetstvenno po novym i utochniaemym	
	postanovkam zadach – iz-za laviny rezul'tatov poslednih let vse vremia	
	otodvigaemyj) [Electronic edition. IThMandSC], Astana, 2018.	

3. Temirgaliyev N. Matematika: Izbrannoe. Nauka // pod red. B. S.
Kashina [Mathematics: Selected. Science//under the editorship of B. S.
Kashin]. Astana: L.N.Gumilyov ENU publishing house, 2009, 613 p.
4. Temirgaliev N., Sherniyazov K. E., Berikhanova M. E. Exact Orders of
Computational Cross-Sections in Problems of Reconstructing Functions
and Sampling Solutions of the Klein-Gordon Equation from Fourier
Coefficients // Proceedings of the Steklov Institute of Mathematics
(Supplementary issues), 2013, 282, suppl. 1, 165-191.
5. Temirgaliev N., Abikenova Sh. K., Zhubanysheva A. Zh., Taugynbaeva
G. E., Discretization of Solutions to a Wave Equation, Numerical
Differentiation, and Function Recovery with the Help of Computer
(Computing) Diameter //Kazakh/Russian Mathematics (Iz. VUZ), 2013,
Vol. 57, No. 8, pp. 75-80.
6. N. Temirgaliev, Sh. K. Abikenova, Sh.U. Azhgaliev, G. E.
Taugynbaeva and A.Zh.Zhubanysheva Theory of Radon Transform in the
Concept of Computational (Numerical) Diameter and Methods of the
Quasi-Monte Carlo Theory// Bulletin of L.N. Gumilyov Eurasian National
University. Mathematics. Computer science. Mechanics series, 2019. Vol.
129. №4, P. 8-53.

	Module 60	
Course code and name	MATH63060 The generalized solutions of the equations of	
	mathematical physics	
Semester(s) when the course is taught	3	
Persons responsible for the module	1. K.N. Ospanov	
	2. R.D. Akhmetkaliyeva	
Language	Kazakh/Russian	
Connection with the curriculum (cycle, component)	Profile (Optional component)	
Credit points (total by discipline)	5 ECTS	
Teaching methods	explanatory-illustrative, information-reporting, partial-search,	
	reproductive	
Workload (incl. contact hours, self-	Total workload: 210	
study hours)	Lectures Practical training Self-study hours	
	30 15 105	
Required and recommended	Equations of mathematical physics	
prerequisites for joining the course		
Module objectives/intended learning	- understand and be able to explain the structure of spaces of functions	
outcomes	with generalized derivatives, prove coercive estimates for the solution of	
	linear differential equations and the solvability of quasilinear equations.	
	- know the methods of research and solution of quasilinear differential	
	equations with increasing coefficients.	
	- to own the method and solution of nonlinear differential equations	
	be able to determine the form of a quesilinear differential equation and	
	- be able to determine the form of a quasimear unreferminal equation and	
	understand and be able to explain the structure of spaces of functions with	
	generalized derivatives, prove coercive estimates for solutions of linear	
	differential equations and the solvability of quasilinear equations	
Content of the course	Sobolev spaces with a singular weight function conditions for embedding	
	into the Lebesgue space. Statement of a singular problem for differential	
	equations. Localization principle. Existence and uniqueness of a	
	generalized solution to the singular problem. Coercive estimates of the	
	solution, behavior of the approximate numbers of the resolvent.	
	Schauder's principle. Methods for proving the solvability of a quasilinear	
	singular equation	

Examination forms	Two oral Midterm control (40 minutes each) in the form of a colloquium
~	and control work. One final oral exam (60 minutes).
Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, cards, internet access to receive articles.
Reading list	1. Shubin. Lectures on the equations of mathematical physics. 2nd ed.
	2003 (in Russian)
	2. Derevich I.V. Workshop on the equations of mathematical physics:
	textbook / Ed. 2nd, St. Petersburg, Lan, 2018 427 p. : ISBN 978-5-
	8114-2601-0 (in Russian)
	3. T.E. Omarov, B.K. Shayakhmetov. Equations in independent works:
	textbook / - Almaty: CyberSmith, 2017 170 p ISBN 978-601-310-
	393-8 (in Kazakh)
	4. Ospanov K.N. Single differential equations: textbook / Almaty:
	CyberSmith, 2017 69 p ISBN 978-601-310-955-8 (in Kazakh)
	5. S.A. Abdymanapov, G.A.Esenbayeva, M.T.Kosmanova Equations of
	Mathematical Physics AlmatyRauan, 2001161 (in Russian)

	Module 6	51	
Course code and name	MATH63061 Multivaria	ble interpolation method	d and its application
Semester(s) when the course is taught	3		
Persons responsible for the module	Y.D. Nursultanov,		
	A. K. Kopezhanova		
Language	Kazakh/Russian		
Connection with the curriculum (cycle,	Profile (Optional compo	nent)	
component)	5 D.C.T.C		
Credit points (total by discipline)	5 ECTS		
Teaching methods	Case study, brainstormin	g, works in group, com	nunicative method,
	cinquain method, interac method, lecture-conferen	tive method, differentiat	ted approach, project
Workload (incl. contact hours, self-study	Total workload: 150		
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	Mathematical Analysis I	[.	
prerequisites for joining the course			
Module objectives/intended learning	To master definitions of	the main functional space	ces, anisotropic spaces,
outcomes	interpolation spaces, thei	r properties, interpolation	on methods, multiple
	parameter interpolation n	nethods; to be capable to	o apply methods of
	interpolation spaces to Le	ebegue's concrete space	s, Net spaces, Lorentz
	spaces, to weight spaces.		
Content of the course	Within the discipline, the	multiparameter interpo	lation method and its
	application are studied. U	Indergraduates will become	ome familiar with K, J -
	methods, the method of r	nultiparameter interpola	ation, the definition of
	anisotropic function spac	es, multidimensional B	esov spaces, anisotropic
	Lorentz spaces, and will	also learn the method a	nd properties of
	interpolations of multidir	nensional and anisotrop	ic function spaces.
Examination forms	Two oral Midterm control	ol (40 minutes each) in t	he form of a colloquium
	and control work. One fin	nal oral exam (60 minut	es).

Study and examination requirements	Current control is set weekly, is estimated at 100 points, includes the
	recording of lecture notes, work at the blackboard, homework and
	independent work. The final grade in the module consists of 40% of the
	progress in the exams, 60% of the admission rating. Tolerance rating is
	the arithmetic mean of midterm controls, including 50% of the current
	rating and 50% of intermediate controls. To be admitted to the exam, you
	must have an admission rating of 50 points or higher.
Technical and electronic learning tools	Multi-projector, presentations, maps, internet access for articles
Reading list	1. Alessandra Lunardi, Interpolation theory, Scuola Normale Superiore,
	2009.
	2. Triebel Interpolation theory, function spaces, differential operators
	Huthig Pub Limited 1995.
	3 Nursultanov ED, "Interpolation theorems for anisotropic spaces and
	their applications", Kazakh/Russian Academy of Sciences reports, 394: 1
	(2004), 22-25 (in Russian).
	http://www.mathnet.ru/php/person.phtml?option_lang=rus&personid=858
	5

		Module 62	
Course code and name	MATH 63062	Multipliers on weighted spaces	of smooth functions
Semester(s) when the course is taught	3		
Persons responsible for the module	L.K.Kusainova		
Language	Kazakh/Russia	n	
Connection with the curriculum (cycle, component)	Profile (Option	al component)	
Credit points (total by discipline)	5 ECTS		
Teaching methods	Lectures, pract	ical classes	
Workload (incl. contact hours, self-study	Total workload	: 150	
hours)	Lectures	Practical training	Self-study hours
	30	30	105
Required and recommended	The general the	eory of interpolation Sobolev spa	ces
prerequisites for joining the course			
Module objectives/intended learning	Functional ana	lysis	
outcomes			
Content of the course	Sobolev weigh	t spaces, basic properties.	
	Theorems on C	uzman-Bezikovich type covering	gs.
	Maximum func	ctions.	
	The Bezikovic	n type double cover theorem.	
	Embedding ine	qualities.	
	Theorems des	cribing multipliers on a pair	of non-weighted Sobolev
	spaces.		
	Multipliers on	a pair of Sobolev weight spaces.	
Examination forms	Oral examinati	on (theoretical and practical tasks	s)
Study and examination requirements	Timely comple	tion of tasks on the subject under	r study, independent work
Technical and electronic learning tools	Textbooks, ma	nuals, monographs on electronic	media

Reading list	1. K.T. Mynbayev, M.O. Otelbayev. Weighted functional spaces and the
	spectrum of differential operators. M., Nauka. 1988-El.
	2. L.K. Kusainova. Embedding and interpolation theorems of Sobolev
	weight spaces (doct. dis.). 1998El.
	3.In. G. Mazya. Spaces of S. Sobolev. LSU Publishing House, 1985-E.
	4. V. G. Mazya, T. O. Shaposhnikova. Multipliers in spaces of
	differentiable functions. LSU Publishing House, 1080-e. 5. U. Rudin.
	Fundamentals of mathematical analysis. Mir, M., 1976-e.
	6. V.A.Trenogin et al. tasks and exercises on functional analysis. Nauka,
	1984-El.
	7. A. Myrzagalieva. On pointwise multipliers in some function Scuola di
	dottorato di ri ricerca in Scienze Matematiche Indirizzo. Matematica
	CICLO:XXIX.2015-El.

Course code and name	SRWG 52120 Scientific-research work of graduate students
Semester(s) when the course is taught	1/2/3/4
Persons responsible for the module	Musabayeva G.K.
Language	Kazakh,Kazakh/Russian
Connection with the curriculum (cycle,	Required Component
component)	
Credit points (total by discipline)	ECTS 24
Teaching methods	Search, research
Workload (incl. contact hours, self-study	Total workload: 720 hours.
hours)	1st semester: 210 hours, 2nd semester: 210 hours, 3rd semester: 120 hours,
	4th semester: 180 hours.
Required and recommended	non
prerequisites for joining the course	
Module objectives/intended learning	Obtaining professional skills and professional experience in the field of
outcomes	scientific research by undergraduates.
	Learning outcomes:
	- own methods of search, processing and analysis of scientific Reading list
	on the subject of research;
	- be able to formulate a problem statement;
	- own research methods on the subject of a master's thesis;
	- be able to formalize the results of research in the form of a report, article,
	thesis;
	- demonstrate knowledge of the research results obtained
Content of the course	The study of new scientific results in accordance with the subject of the
	master's thesis; preparation of scientific reviews on the subject of ongoing
	research; solution of tasks according to an individual plan; registration of
	research results in the form of reports, articles, participation in scientific
	conferences and scientific seminars of the department, approbation of
	research results
Examination forms	Report
Study and examination requirements	I imely implementation of the individual plan of the undergraduate
Technical and electronic learning tools	Search databases of scientific Reading list
Reading list	On the subject of scientific research

Module 64		
Module designation	TEIN 52063Teaching internship	
Semester(s) in which the module is	3	
taught		
Person responsible for the module	A.A. Jumabayeva	
	G.K. Musabayeva	
Language	Kazakh,Kazakh/Russian	

Relation to curriculum	compulsory	
Teaching methods	Case study, brainstorming, works in group, communicative method,	
	cinquain method, interactive method, differentiated approach, project	
	method, lecture-conference, "hot chair" method.	
Workload (incl. contact hours, self-study	Total workload: 120 hours	
hours)		
Credit points	4	
Required and recommended	Higher School Pedagogy	
prerequisites for joining the module	Management psychology	
Module objectives/intended learning	To know the modern pedagogical technologies and possesses	
outcomes	communication skills.	
	The ability to put the latest achievements in the field of pedagogical	
	activity into practice, to expand and deepen their knowledge in the field of	
	scientific research	
Content	Acquaintance with the peculiarities of the organization of educational	
	work in higher educational institutions. Monitoring the demonstration by	
	the teacher-mentor of methods and techniques for organizing various	
	types of educational, educational and extracurricular work with students	
	analysis and evaluation. Independent activity of students in the	
	organization and conduct of educational activities. Planning and	
	conducting a form of extracurricular work. Development of class notes for	
	one of the sections of the discipline, conducting classes under the	
	supervision of a teacher.	
Exams and assessment formats	Report	
Study and examination requirements	Visiting the classes, the classroom activity, timely execution and	
	submission of tasks; visiting interim control, submission of tasks of final	
	examination	
Reading list	Individual selection of educational and methodical Reading list depending	
	on the discipline taught	

Module 65		
Module designation	SRWG 62065 Research practice	
Semester(s) in which the module is	4	
taught		
Person responsible for the module	A.A. Jumabayeva	
	G.K. Musabayeva	
Language	Kazakh,Kazakh/Russian	
Relation to curriculum	compulsory	
Teaching methods	explanatory-illustrative, information-reporting, partial-search,	
	reproductive	
Workload (incl. contact hours, self-study	Total workload: 360	
hours)		
Credit points	12	
Required and recommended		
prerequisites for joining the module		
Module objectives/intended learning	To be capable to be correct to formulate the purposes and problems of	
outcomes	scientific research, the concept of scientific search; to be capable to make	
	the plan of research work for separate sections of the master thesis, to plan	
	works necessary for performance resources, to estimate results of own	
	work; to be capable to take useful scientific and technical information	
	from electronic libraries, abstract magazines, the Internet; to be capable to	
	present own new scientific results in the form of strictly reasonable	
	statements.	

Content	- The study of fundamental and periodical Reading list, regulatory and
	methodological materials on issues developed in the final qualifying
	master's work;
	- Confirmation of the relevance and practical significance of the research
	topic chosen by the master student;
	- Evaluation of the practical significance of the test questions;
	- The collection, systematization and generalization of practical material
	for use in the final qualifying (Master's) work;
	- Preparation of a scientific report on the final conference abstracts on
	student conference or an article for publication
Exams and assessment formats	Report
Study and examination requirements	Visiting the classes, the classroom activity, timely execution and
	submission of tasks; visiting interim control, submission of tasks of final
	examination
Reading list	Review of current scientific journal Reading list on the selected topic of
	master students.

Considered and approved at the meeting of the department of Fundamental Mathematics. 15.03.2022 Record № 8 date

Alday M (Name)